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Abstract
Density estimation is a challenging unsupervised learning problem. Current maximum likelihood approaches for density
estimation are either restrictive or incapable of producing high-quality samples. On the other hand, likelihood-free models
such as generative adversarial networks, produce sharp samples without a density model. The lack of a density estimate
limits the applications to which the sampled data can be put, however. We propose a generative adversarial density estimator
(GADE), a density estimation approach that bridges the gap between the two. Allowing for a prior on the parameters of the
model, we extend our density estimator to a Bayesian model where we can leverage the predictive variance to measure our
confidence in the likelihood. Our experiments on challenging applications such as visual dialog or autonomous driving where
the density and the confidence in predictions are crucial shows the effectiveness of our approach.

Keywords Generative models · GANs · Flow-based generative models · Deep learning

1 Introduction

Generative modelling is amongst the longest-standing prob-
lems in machine learning, and one that has been drawing
increasing attention. This is at least partly due to the short-
comings of the predominant discriminative deep learning-
based models. These shortcomings include the failure to
generalise, a lack of robustness to data distribution changes,
and the need for large volumes of training data.

Deep generative models have been successful in address-
ing some of these shortcomings. In particular, deep maxi-
mum likelihood models such as deep Boltzmann machines
(Salakhutdinov and Hinton 2009), variational autoencoders
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(VAEs) (Kingma and Welling 2014), autoregressive models
(Gregor et al. 2014; Oord et al. 2016), real non-volume pre-
serving transformations (Dinh et al. 2016) etc.have demon-
strated an impressive ability to model complex densities.

Likelihood-free approaches (Gutmann et al. 2018; Good-
fellow et al. 2014) such as generative adversarial networks
(GANs) (Goodfellow et al. 2014) have outperformed previ-
ous deep generative models in their ability to model complex
distributions. In image-based problems they have shown a
particular ability to consistently generate sharp and realis-
tic looking samples (Karras et al. 2017; Zhang et al. 2017;
Nguyen et al. 2017). GANs are one of the implicit genera-
tive models wherein density is not explicitly defined (Diggle
and Gratton 1984). Unfortunately, GANs are incapable of
evaluating densities by-design.

Maximum likelihood models have the advantage that they
are able to represent probability density explicitly, but either
perform poorly in terms of the quality of samples they gen-
erate or are relatively inefficient to train.

As modern datasets are typically large, high-dimensional
and highly structured, the challenge is building models that
are powerful enough to capture the underlying complexity yet
still efficient to train in estimating the density of instances.

Density estimates are essential in a wide range of practical
problems in Computer Vision, particularly when likelihoods
over the generated samples are critical. This occurs, for
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example, when it is important to both explore and opti-
mise over a search space, when confidence estimates about
a hypothesis are required, or when control over the level of
generalisation is important. The typical sample quality met-
rics are inadequate since the generative model may simply
memoraize the data or miss important modes (Theis et al.
2015). Moreover, in an application such as one where the
virtual agent is engaged in a dialog with the user about an
image, the estimate of how likely an answer is in addition to
the agent’s confidence improves both dialogue fluidity and
method performance. Alternatively, density estimates such
as autoregressive models (Gregor et al. 2014), flow-based
methods (Dinh et al. 2014, 2016) or non-parameteric meth-
ods such as kernel density estimation (KDE) (Goodfellow
et al. 2014) are either overly computationally demanding or
rely on heavy engineering of the neural networks involved.

In this paper, we introduce aGenerative Adversarial Den-
sity Estimator that is both easy to train and expressive enough
to model high-dimensional data. In particular, we bridge the
gap between the maximum likelihood and likelihood-free
models by explicitly modeling the likelihood while using
adversarial samples to compute the normalizer. As a by-
product of this model, we show the local properties of the
density function are captured and allow for diverse samples
to be generated. Further, we show our approach is capable
of modeling the likelihood of complex data, such as images,
from which realistic looking samples can be taken.

In addition, our approach easily extends to Bayesian
estimation where the distribution of the parameters are incor-
porated in the generative model. This allows us to compute
the predictive variance which uncovers the “uncertainty” in
the prediction. This uncertainty can be used in applications
such as Visual Dialog (Das et al. 2017) where an agent is
trained to respond to questions when confident or reply “I
don’t know” for uncertain answers. This is essential if such
agents are to be of practical utility.

Moreover, we employ our approach in Bayesian imitation
learning (Price and Boutilier 2003; Ramachandran and Amir
2007) where uncertainty is crucial in determining the actions
to take. For instance, in autonomous driving where uncertain
decisions are costly and lead to human casualties, employing
our approach is highly desirable. Hence, we demonstrate an
application of our approach to autonomous driving using the
TORCS driving simulator (Espié et al. 2000). This paper
makes the following contributions:

1. We propose a generative adversarial density estimator
network able to perform efficient sampling as well as
likelihood evaluation without the need for an explicit
invertible generator.

2. We propose a learning objective, based on sound theo-
retical grounds, for our adversarial density estimator that
attains good log-likelihoods and generates high-quality

samples on multiple datasets as well as estimating uncer-
tainty in a vision-and-language problem.

3. Our approach is naturally extended to a Bayesian setting.
In particular we investigate a conjugate prior and an effi-
cient gradient based Monte Carlo method to estimate the
posterior.

4. We propose a method to efficiently regularize the Jaco-
bian of the generator function to evaluate the likelihoods
of the model.

5. We provide a theoretical apparatus for future research
in density estimation, in particular, utilizing adversarial
training.

6. Weshowhowour adversarial density estimation approach
is capable of improving imitation learning for the chal-
lenging task of autonomous driving.

2 RelatedWork

DeepBoltzmannmachines (Salakhutdinov andHinton 2009)
represent one of the earlier approaches to maximum like-
lihood modelling, but due to their intractable nature, they
are hard to train. Recently, autoregressive approaches (Oord
et al. 2016; Salimans et al. 2017) have been used to model
the distribution of each image pixel value directly. As such,
the ordering of the dimensions can be critical to the training
of the model. The sequential nature of these models signifi-
cantly limits their computational efficiency. VAEs (Kingma
and Welling 2014) have shown to be successful in modeling
a latent variable from which instances from the distribution
can be reconstructed.While these approaches have been very
successful, image samples generated by VAEs are generally
blurry and exhibit unrealistic artefacts.

Generative Adversarial Networks (GANs) (Goodfellow
et al. 2014) avoid the maximum likelihood principle alto-
gether. Instead, the generative network is associated with a
discriminator network whose task is to distinguish between
samples and real data. Successfully trained GAN models
consistently outperform their counterparts in producing high-
quality, sharp and realistic image samples (Wang et al. 2017;
Karras et al. 2017). However, GANs cannot estimate the den-
sity function over the sampled data instances, even though
approaches such asWasserstein distance (WGAN) (Arjovsky
et al. 2017; Gulrajani et al. 2017) and f-GAN (Nowozin et al.
2016) are similar to ours. Recently, (Rezende and Mohamed
2015); Grover et al. 2018) considered likelihood maximisa-
tion with a change of variable. However, these approaches
require designing a function that is both invertible and that
has an easily computable Jacobian. These designs typically
produce low quality samples, or are inefficient.

The connection between GANs and actor-critic models in
reinforcement learning (RL) has alreadybeenmade (Pfau and
Vinyals 2016). In addition, (Finn et al. 2016) pointed out the
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connection between energy-basedmodels,GANs and inverse
RL that is closely related to our approach. However, the rela-
tion between the density and the entropy of the generator
is not considered. The Bayesian approaches for inverse RL
were introduced by Ramachandran and Amir (2007). GANs
have also been used in imitation learning, to estimate the
reward function (Li et al. 2017; Ho and Ermon 2016). More-
over, maximum entropy inverse RL (Ziebart et al. 2008) and
guided policy search (Levine and Koltun 2013) are related to
ours.

3 Generative Adversarial Density Estimator

3.1 Adversarial Formulation

We consider the problem of estimating the density for an
observation sample x (e.g. an image) defined by

p(x|w) = exp(φ(w, x) − A(w)),

A(w) = log

(∫
exp(φ(w, x))dx

)
. (1)

here φ(w, x) is the energy function for the Boltzmann dis-
tribution and the parameter w fully specifies the density
function. We use a deep neural network with linear output
to model this function, i.e. φ(w, x) = w�

1 φ′(w2, x), where
w = {w1,w2} and feature vector φ′(w2, x) is the sufficient
statistics that we learn. Alternatively φ can be seen as a func-
tion that maps the input x to a feature space where the density
is easy to formulate. In addition, A(w) is the normalizer that
ensures

∫
p(x|w)dx = 1.

Given a dataset X = {x1 . . . , xn} where samples are
drawn i.i.d from the underlying distribution p, we are inter-
ested in finding parameter w in Eq. 1. To that end, we
maximize the expected log-likelihood of these observations
in the dataset with respect to this density model to obtain the
parameter w, that is, maxw Ep

[
log p(x|w)

]
, where

Ep
[
log p(x|w)

] =
∫

log(p(x|w))p(x|w)dx

= Ep [φ(w, x)] − A(w) (2)

Computing the normalizer A(w) is intractable, and thus we
resort to approximations. In particular, we utilize the varia-
tional principle to obtain an upper bound on A(w) using an
alternative distribution q parameterized by θ as

Aq(w) = sup
q

{ Eq [φ(w,x)]︷ ︸︸ ︷∫
φ(w, x)q(x|θ)dx+

∫
−q(x|θ) log (q(x|θ)) dx

︸ ︷︷ ︸
Hx(q)

}
(3)

Note that direct maximization of Aq(w) yields the optimal
value when p = q, i.e. when q takes the same form as p.
Classical variational inference methods (see e.g. (Kingma
andWelling 2014)) define a class of distributions fromwhich
a q is selected (or rather parameter θ is obtained). Here, moti-
vated by the approach used in GANs, we specify q through
a likelihood-free deterministic function which we use to
generate samples (hence called generator). Assuming this
generator function x = gθg (z), z ∼ pz is invertible,1 by the
calculus of variable change (Ben-Israel 1999) Eq [φ(w, x)]
in Eq. 3 is:

∫
φ(w, x)q(x)dx =

∫
φ(w, gθg (z))pz(g

−1
θg

(x)|θ z, θ g)
∣∣∣det (J�

x Jx
)∣∣∣1/2 dz

and pz(gθg (x)
−1|θ z, θ g)

∣∣∣det (J�
x Jx

)∣∣∣1/2 dz = pz(z|θ z)dz,
(4)

where pz is the prior distribution with parameter θ z and Jx
is the Jacobian of gθg (x)

−1. Here we use the convention that
θ is composed of two parts: θ g, θ z for the parameters of
the transformation function gθg (·) and the distribution of z,
respectively. In the second line of Eq. 4, we specify that gθg

preserves the volume with respect to φ(w, x). Note in prac-
tice we use φ(w2, x) as a surrogate for g−1 and regularize it
to have a relatively constant determinant (by adding a regu-
larization term for the gradients of φ(w2, x)).

To compute the entropy of q in Hx(q) in Eq. 3, again
using variable change, we have log pz(z) = log q(g(z)) +
log(

∣∣det (J�
z Jz

)∣∣1/2) and q(g(z)) = q(x) for which the
expectation yields,

Hx(q) =
entropy of prior noise︷ ︸︸ ︷

H(pz) +
local geometry of the transformed space︷︸︸︷

Hg ,

where Hg = −Epz

[
log

∣∣ det(J�
z Jz)

∣∣1/2] (5)

where Jz is the Jacobian of gθg (the generator). Intuitively,
this equality states that the entropy with respect to the distri-
bution of the generated samples is the sum of two terms (1)
the entropy of the noise prior which captures the information

1 This is merely for theoretical analysis. In practice, we don’t need to
explicitly define an invertible function.
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present in the noise distribution (specified by parameter θ z)
and (2) the expected local behavior in the transformed space
(specified by parameter θ g). From the information geometric
perspective, the latter term captures the volume of the geo-
metric space that the transformation function gθg produces.

Remark 1 Explicitly constraining the generator to be invert-
ible is infeasible, however, in practice we can use networks
with inverted architecture tomediate this. Furthermore, when
the matrix J�

z Jz is full-rank, it indicates the mapping is one-
to-one, i.e. there is an invertible function that maps samples
from z to observation samples x.

Since computing the log det term in Eq. 5 is computation-
ally expensive, we resort to an approximation that is easier
to optimize with stochastic gradient descent methods. We
utilize the following Lemma2:

Lemma 2 For a matrix A ∈ R
d×d and Id the identity matrix

of size d where λ1(A) denotes the largest eigenvalue and
λ1(A) < α we have

log det(A) = d log(α) +
∞∑
k=1

(−1)k+1 tr
((

A/α − Id
)k)

k
.

(6)

Proof Refer to the Appendix. ��
Employing Lemma 2, we are able to substitute the com-
putation of the determinant for a more efficient alternative
approximation. This approximation is arbitrarily close to the
true value depending on the number of steps in the series and
the value chosen for α.

Remark 3 One can use our approach in a flow-basedmodel to
generate samples and compute the density. This corresponds
to when q estimates the true data distribution, which is a spe-
cial case in our approach. However, it is generally harder to
have one network achieve both tasks (generation and density
estimation) as such we consider decoupling them.

3.2 Main Algorithm

Taking the derivative of the normalizer w.r.t. the parameter
w1 in Eq. 1 yields the first moment of this distribution, i.e.
E[φ′(w2, x)] = ∂A(w)

∂w1
. Furthermore, the second derivative is

the covariance (and in this case Fisher information specify-
ing the sensitivity of the parameter to the input). As such, it
matches the moments from the true distribution and its esti-
mate with respect to the sufficient statistics φ′(w2, x) when
using maximum likelihood.

2 A randomized version of this lemma is proposed in Boutsidis et al.
(2017).

Putting Eqs. 1, 3, 4 and 5 together, we have a max-min
problem to solve for two sets of parameters:w and θ . Finding
the saddle point solution for this problem is challenging, as
such, we employ an alternating optimization using stochastic
gradient descent to update the parametersw and θ iteratively,
as

w ← w + ηw∇w

(
Ep

[
φ(w, x)

]
− Epz

[
φ(w, gθg (z))

])

θ ← θ + ηg∇θ

(
Epz

[
φ(w, gθg (z))

]
+ H(pz) + Hg

)
, (7)

In general, we need to optimize w at each step until conver-
gence using the θ found in the previous iteration. In practice,
we use a smaller learning rate to update θ (or fewer rounds
of update) to guarantee convergence (Konda and Tsitsiklis
2004).

The transformation function acts similar to the generator
in GANs is mode-seeking and it is complemented by the
ability of maximum likelihood to cover the space of X . In
particular, maximizing the entropy in the input noise and the
output ensures a transformation function gθg that does not
collapse.

Based on the definition we provided in Eq. 4, the ideal
distribution for pz is one that follows a similar distribution.
In particular, z is more likely for themost frequent samples in
the true distribution for which φ(w, x) is the highest. How-
ever, as a prior we can choose a simple distribution such as a
Gaussianwhose entropy H(pz) can be analytically computed
in closed-form (e.g. for Guassian log(σ

√
2πe) for standard

deviation σ ).

Remark 4 It is interesting to note that if gθ g (·) = φ′−1
(·) then

from Eq. 4, we have Eq [w�
1 φ′(w2, x)] equals

Epz [w�
1 φ′(w2, gθg (z))] = Epz [w�

1 z], hence Eq [φ′(w2, x)]
= Epz [z] and Ep[φ′(w2, x)] = Epz [z]. This entails distri-
bution of prior z should match that of φ in expectation. In
practice, constraining gθ g to be an inverse ofφ (even in expec-
tation) is too restrictive and hard to implement.3 However, it
is fruitful to knowwhen constructing neural networks for this
task, an inverse architecture for the networks learning gθ g and
φ has the best chance of success. Similarly, it is based on this
argument and the entropy in Eq. 5 that it is better to learn the
distribution of z. However, it should be noted that since gθg is
a deterministic function, changes to the distribution of z can
negatively impact our generator or decrease the convergence
speed of gθg network. In practice, we make sure the learning
rate of θ z is smaller than θ g , its counterpart for gθg .

3 We observed in practice that if the generator function gz shares
weights with that of φ (i.e. second layer of gz with last layer of φ

and so forth) the approach does not perform well. In addition, even if
we constrain each layer of the gz network to match in distribution to
layers of φ the quality of the generated samples deteriorate.
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Algorithm 1 Our density estimation algorithm.

1: Input X , learning rates ηw, ηg, ηz , ηz < ηg < ηw , regularization
parameter λ

2: while θ is not converged do
3: Sample uniformly x1, . . . , xn from X
4: Sample z′

1, . . . , z
′
m ∼ pz(z|θ z)

5: ρ′
w = ∇w

[ 1
n

∑
i (φ(w, xi )) − 1

m

∑
i (φ(w, gθ (zi )))

]
6: R = −‖∇w2φ

′(w2, x)‖2
7: w = w + ηw.Adam(w, ρ′

w + λ∇wR)

8: Sample z′
1, . . . , z

′
m ∼ pz(z|θ z)

9: Ĥg = 1
2 log det(J

�
z Jz)  Using Lemma 2

10: ρ′
θ {g,z} = ∇θ {g,z}

1
m

∑
i

[
φ(w, gθ {g,z} (zi )) + Ĥg

]
11: θ g = θ g + ηg .Adam(θ g, ρ

′
θg

)

12: θ z = θ z + ηz .Adam(θ z,∇θ z

(
H(pz) + ρ′

θ z

)
)

13: end while

To estimate the integrals in the normalizer Aq(w) we
employ Monte Carlo method using samples the generator
produces and Lemma 2 to obtain Â(w), i.e.

Â(w) = 1

m

m∑
j=1

φ(w, x j ) + H(pz) + Ĥg

where x j = gθg (z j ), z j ∼ q(z j |θ z), j = 1, . . . ,m (8)

Here, Ĥg is the empirical estimate of Hg using samples z j
for the Jacobian of the transformation function gθg .

The summary of the algorithm is shown in Algorithm
1 where we employ this alternating optimization. In our
approach density estimator maximizes the log-likelihood of
the given data with respect to the model in Eq. 1. Gener-
ated samples from the transformation function gθg are the
byproduct of this maximization in the normalizer.

We note that our approach in maximizing the Hg in
Eq. 5 resembles the ones in volume preserving or non-
volume preserving generative models (Dinh et al. 2016,
2014) and normalized flows (Grover et al. 2018; Rezende and
Mohamed 2015)) that have been recently investigated. These
approaches maximize the likelihood of the data (correspond-
ing to only maximizing Hg) directly by carefully designing
a function that is both invertible and its Jacobian is easy
to compute. These designs typically lead to approximations
that either produce subpar samples or are inefficient. Alterna-
tively, our approach does not require an invertible function. In
addition, we apply the transformation in the dual space rather
than directly on the input data. On the other hand, we know
Ep

[
w�
1 φ(w2, x)

] ≤ A(w), then for a given distribution q we
have, Ep [φ(w, x)] − Ez∼pz

[
φ(w, gθg (z))

] ≤ H(pz) + Hg

where the entropies provide the bound on the difference
between the moments under p and q.

3.3 Bayesian Extension

One benefit of such density estimation is that we can easily
extend the model to a Bayesian one where a distribution over
parameters given the observations is taken rather than the
point estimate. As such, we employ prior distribution over
the parameters and the Bayes rule to derive the posterior
distribution over the parameters. For the exponential distri-
bution in this paper we use a conjugate prior for parameter
w1: p(w1) = exp(w�

1 β − β0A(w1)). The posterior is then
computed in a closed-form: then

p(w1|x) = exp(w�
1 β + φ′(w2, x) − (1 + β0)A(w))

For w2 we use the same prior, however, the posterior
does not have a closed-form solution. As such, we employ
Stochastic Gradient Langevin Dynamics (SGLD) (Welling
and Teh 2011) to sample from this posterior. SGLD is an
efficient algorithm that is easy to implement when the gradi-
ent of the log of the posterior is easy to compute (as it is in
our case where the density is estimated using a deep neural
network). SGLD performs Monte Carlo sampling by adding
a Gaussian noise with a variance proportionate to the learn-
ing rate to the gradient updates of the log posterior. Therefore
the predictive distribution for a test instance x∗ is

p(x∗|X ) =
∫

p(x∗|w)p(w|X )dw (9)

where we employMonte Carlo estimate of this integral along
with the samples of the posterior to estimate. Predicting the
output in Eq. 9 needs to be weighted by the step size in
the Langevin dynamics to adjust for the decrease in the step
size which in turn decreases the mixing rate as explained in
(Welling and Teh 2011).

Note in practice, we found it helps to speed up the “burn-
in” process where we use Adam for the first few iterations
(in larger datasets), after which we revert to SGD and sample
according toSGLDupdate rule inAlgorithm1.Aswas shown
in (Saatchi and Wilson 2017) such Bayesian approaches can
significantly improve the performance due to the ability of
the model in exploring the space and averaging parameter
values.

3.4 Mode Collapse

Mode collapse is a phenomenon in which function gθg maps
all zs to a small number of points in the space of X . This
can happen in similar algorithms such as GANs where mode
collapse is a major problem. Our approach is less likely to
suffer from this phenomenon sincewe aremaximizing the Hg

for the generated samples. As shown in Fig. 1 we transform
the input z to the output space as the local geometry of the
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Fig. 1 Samples from z are transformed by g(z). Red dashed-line indi-
cate the transformation function that has higher log det(J�

z Jz). This
transformation induces a higher entropy in the output space and hence
better spread out

output space better spread out because we are enforcing the
local geometry of a point mapped in the output space x to
encourage higher volume.

The interplay between the entropy of the distribution of
z and the local characteristics of the transformation function
heavily contributes to the performance of the quality of the
samples generated. In particular, in case the distribution of
z is Gaussian, maximizing the entropy amount to increasing
its corresponding variance. Staring with a large variance and
transforming to a spread-out space in p, leads to an estimate
of the likelihood that covers all the spacewith relatively simi-
lar value. Hence, the samples generated this way exhibit poor
quality and as such under-perform in estimating the correct
likelihood. On the other hand, when the initial variance of
the distribution of z is small and gradually this variance is
increased, the samples generated by gθg cover the mode of
the distribution p first and subsequently learns the less fre-
quent samples. In practice, we take the latter approach and
start with a small variance for the pz so that the mode of p
is learnt first.

4 Experiments

Our approach provides a path for density estimation while
we have the capacity to draw samples from the distribution
learned from the dataset.As such,we direct our focus towards
various applications where various aspects of our approach
is evaluated. We use Algorithm 1 to train our density model
in which a generator is also learnt that we can sample from.
When the distribution of the output for the generator is too
large, computing the Jacobian is expensive. As such, dur-
ing training we sample a set of dimensions from the output
and compute the gradients. To estimate the Jacobian we use
Lemma 2 and found the value of α set to the dimension of
the Jacobian performs well in practice. In the interest of effi-
ciency, we used k = 2. We use the Jacobian-vector trick
similar to that of (Martens 2010) to compute the Jacobian for
which we used 5 samples. Note that these 5 samples, are just

Fig. 2 A simple density estimation: the first row shows a multi-modal
distribution and the distribution of samples from the generator at various
stages; and, in the second diagram, the convergence of the estimated
density to its true value is shown

matrix-vector products and as such very efficient. In addi-
tion, we update the parameter w twice as often as that of θ

while regularize the gradients to ensure stable training that
converges to an optimum solution.

4.1 Simulation

For the first experiment, we use samples from a Gaussian
mixture model to simulate a dataset we are interested in its
density model. Each component is a Gaussian distribution
with standard deviation 0.1. The generated dataset is shown
in Fig. 2 on top. We then use a simple two fully connected
layer neural network for the generator and φ(w, x). In the top
row of Fig. 2 the generated samples are plotted and as shown
over time our approach is able to capture the density model
and generate samples from all the modes. Furthermore, at
the bottom of Fig. 2 the convergence of the density estimate
to its true value is shown. As observed, as the distribution
of the samples from the generator look more similar to the
real ones, the estimate of the density (as measured by the
expected log-likelihood with respect to the true distribution)
approaches the true value.

4.2 Image Generation and Density Estimation

In this section, we examine the quality of the generated
images using our approach as well as its density estimation
ability. We use DCGAN’s (Radford et al. 2015) architecture
for image generation.
MNIST To evaluate the effect of the Jacobian on the mode
collapse, we have conducted an experiment similar to that of
(Metz et al. 2016) where we select 3 digits at random and
build a 3-channel “stacked-MNIST” by concatenating them.
Using a pre-trained classifier, we find the number of modes
for which the generator produced at least one sample. The
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Table 1 Mode collapse on Stacked-MNIST

Modes

DCGAN (Radford et al. 2015) 99

ALI (Dumoulin et al. 2017) 16

Unrolled GAN (Metz et al. 2016) 48.7

GADE 125

GADE Bayesian 142

Table 2 MNIST test set negative log-likelihoodwith generativemodels
(lower is better). These values are estimates since the true density is
intractable

MNIST − log p(x)

VAE (Kingma and Welling 2014) 87.88

IWAE (IW = 50) (Burda et al. 2015) 86.10

VAE+NF (Rezende and Mohamed 2015)) 85.10

ASY-IWAE (Zheng et al. 2017) 85.76

Auxiliary VAE (Maaløe et al. 2016) 84.59

DARN (Gregor et al. 2014) 84.13

IWAE+ConvFlow (Zheng et al. 2018) 79.78

GADE 82.39

GADE Bayesian 83.12

Fig. 3 Samples from MNIST sorted based on their density from high
to low

results of running this experiment is shown in Table 1. As
observed our approach outperforms its counterparts indicat-
ing the ability of our approach in avoiding mode-collapse.

We use MNIST, a dataset of handwritten characters, to
generate samples from q. We show samples both from max-
imum log-likelihood and Bayesian. We use the average
predictive probability for each instance (obtained similar to
that of Eq. 9) and show the results in Fig. 5. It is interesting
to observe that 1 and 7 are the least likely digits because they
have straight lines that have structural differences with other
digits. In addition, we compare the likelihood estimated by
our approach compared to the-state-of-the-art. The evalua-
tion of log-likelihood (LL) in nats is reported in Table 2. All
log-likelihood values were estimated as the mean of 5000
instances drawn randomly from the test set. Since we use
the predictive distribution in Eq. 9, the likelihood is not as
low as when we compute the likelihood directly. Hence, the
reported values are stochastic lower bounds on the true value.

Figure 3, 4 depicts samples drawn from the generator
sorted by the likelihood using our Bayesian approach.

For MNIST, we have the variance of φ(w, gθg (z)) for 500
instances when using WGAN-GP to be 0.009 while ours is
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Fig. 4 Average posterior probability for each digit sorted from the high-
est variance to the lowest

(a) Max LL (b) Bayesian

(c) Max LL (d) Bayesian

Fig. 5 Samples drawn from the generator using MNIST: a and b; and,
CIFAR-10 c and d. Alternatives (e.g. (Kolesnikov and Lampert 2017;
Salimans et al. 2017)) can generate visually better quality images

0.03 (which is 3.3 times more). Besides, for the complete
dataset when we use both real and generated samples, this
variance changes from 0.3 in WGAN-GP to 5.28 in ours.
That is an indication that our approach–rather than simply
distinguishing real from fake–learns the likelihoods.
CIFAR-10 We have trained our approach on CIFAR-10
dataset (Krizhevsky and Hinton 2009) composed of 50, 000
RGB images of natural scenes. Samples from this dataset is
shown in Fig. 5.We achieve the inception score of 7.84 using
a modified ResNet.
CelebA While MNIST and CIFAR-10 are smaller dimen-
sions, we evalue our approach on CelebA (Liu et al. 2015)
with size 256 × 256. While our approach performs density
estimation, we can generate high-quality images to estimate
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Fig. 6 Estimation of the normalizer based on the number of sam-
ples. Increasing the number of samples improves the estimation and
approaches the true expectation for the normalizer of MNIST

the normalizer. In this experiment, we utilize the Progressive-
GAN (Karras et al. 2017) architecture and learning procedure
to produce images and evaluate their density estimation. We
compare the output of our density estimator versus WGAN-
GP’s (Gulrajani et al. 2017) discriminator output as shown
in Figs. 6, 7. The histogram distribution of the fake samples
in WGAN-GP looks very similar to the Normal distribu-
tion similar to the prior noise. In addition, as expected with
most GAN-based methods, the discriminator value overlaps
between real and fake samples indicating the discriminator’s
confusion. Our approach on the other hand, shows a bet-
ter spread histograms. Furthermore, the images in the graph
shows samples of generated images with their probability as
computed by our approach. It is observed that more typical
looks that are more representative of the dataset concentrated
in a high density area. In the progressive training, we freeze
the update of the noise entropy for the higher quality images
to avoid changing the networks significantly. The Frechet
Inception Distance (FID) computed from 50K images is 5.96
for this dataset.

4.3 Uncertainty in Visual Question Answering

We utilize our approach in the visual dialog problem intro-
duced in (Das et al. 2017). The task is to design an agent
capable of replying to questions based on image content and
history of a dialog with a human user. The objective is to gen-
erate responses to questions that are most likely to be given
by a human. The transformation function gθg is responsi-
ble for generating a suitable answer for the user’s question,
given the previous history of agent-user conversations, the
user question and the visual content (rather than just a noise
distribution in the previous experiment). Then, the likelihood
of the human responses is higher.

Our approach is well embedded into a larger dialog sys-
tem built upon that of (Serban et al. 2016; Lu et al. 2017). We
use a hierarchical setup where a neural network for sequence

Fig. 7 Histogram of the evaluation of φ(w, gθg (z)) for 500 samples
generated from the CelebA dataset with 256 × 256 dimensions (on
top) compared to the discriminator value of WGAN-GP (on bottom).
On the left corner of each plot, the distribution of the φ(w, gθg (z)) is
shown vs. the output of the discriminator in the WGAN-GP. As shown,
discriminator in WGAN-GP finds a distribution that has around half
overlap between reals and the fakes

models (LSTM in our case) encodes the word sequence and
another one captures the context through historical depen-
dencies of the conversions. A common practice is to use an
attention mechanism with the encoder to implicitly identi-
fying parts of dialog history relevant to the current question
(Serban et al. 2016; Das et al. 2017). It is expected that a sim-
ilar mechanism is able to localize the relevant regions in the
image consistent with the attended history. Since the output
is discrete, we use Gumbel-Max trick (Jang et al. 2016;Mad-
dison et al. 2016) which illustrates the ability of our approach
in maximizing likelihood for discrete data.

This task is specifically suitable for Bayesian formulation
of our approach since the space in which the function gθg

formulates the responses is large and as such this causes
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Table 3 Results on visual dialog dataset with late fusion (LF), hierarchical recurrent encoder (HRE), memory network (MN). GAN1 is devised by
using generated fake samples in the discriminator and GAN2, in addition, includes negative answers

Discriminative Generative

Model MRR R@1 R@5 R@10 Mean MRR R@1 R@5 R@10 Mean

HieCoAtt (Lu et al. 2016) 0.5788 43.51 74.49 83.96 5.84 – – – – –

LF (Das et al. 2017) 0.5807 43.82 74.68 84.07 5.78 0.5199 41.83 61.78 67.59 17.07

HRE (Das et al. 2017) 0.5868 44.82 74.81 84.36 5.66 0.5242 42.28 62.33 68.17 16.79

MN (Das et al. 2017) 0.5965 45.55 76.22 85.37 5.46 0.5259 42.29 62.85 68.88 17.06

HCIAE (Lu et al. 2017) 0.6140 47.73 77.50 86.35 5.15 0.5386 44.06 63.55 69.24 16.01

GAN1 (Lu et al. 2017) 0.2177 8.82 32.97 52.14 18.53 0.5298 43.12 62.74 68.58 16.25

GAN2 (Lu et al. 2017) 0.6050 46.20 77.92 87.20 4.97 0.5459 44.33 65.05 71.40 14.34

WGAN 0.5524 43.77 67.75 72.32 13.18 0.5306 43.49 62.38 67.73 17.15

Ours 0.6125 47.17 77.25 87.65 4.82 0.5448 44.37 64.34 71.81 14.93

Ours Bayesian 0.6204 47.65 78.91 88.30 4.61 0.5513 45.03 65.25 71.93 14.01

Higher values are better except for the mean. Best numbers are boldfaced

uncertainty in the prediction. Hence, our approach lever-
ages this uncertainty in the predictive distribution when
responding by providing “I don’t know” statements when
the predictive variance is high.

The visual dialog (Das et al. 2017) dataset we use was
collected by pairing two Amazon Mechanical Turk users
conversing about an image. The “questioner” user is shown
the captions of the image (from COCO dataset (Lin et al.
2014))while the image itself remains hidden.The “answerer”
user sees the image and provides responses about the image
to the questioner. This dialog is carried out for 10 rounds
on the COCO dataset leading to 83, 000 training dialogs
and 40, 000 validation dialog. Following the baseline, the
likelihood score is used in ranking amongst 100 candidate
answers.

We set the parameter for the Gumbel temperature to 0.1.
Our LSTMs are single layer with 512-dimensional hidden
states. Further, we use VGG-19 (Simonyan and Zisserman
2014) to represent images and Adam optimization with the
learning-rate of 4e-4. For the Bayesian case, we use SGD
and set the learning rate to decrease from 1e-3 to 1e-4. Fol-
lowing the problem setup in (Lu et al. 2017), we pre-train
our transformation function gθg by maximizing the score it
generates compared to the ground-truth. Similarly, we pre-
train the density estimator using samples from 100 rounds
of the question-answers such that the score of the ground-
truth is higher than non-matching responses in the training
set. We pre-train both for 20 epochs. Moreover, we regular-
ize the latent space from which the answers are generated
with its entropy (we assumed the latent space is a zero-mean
Gaussian). We draw 5 samples from which we pick the most
likely.

In Table 3 we provide the results of running our approach
on the visual dialog dataset compared to the state-of-the-art
GAN methods and other baselines in (Shetty et al. 2017; Lu

et al. 2017). Models are evaluated on standard retrieval met-
rics: mean rank, recall @k, and mean reciprocal rank (MRR)
of human response. The results from the pre-training stage is
indicated asHCIAE in the table and as is shownGANtraining
improves the performance. In addition, our approach outper-
forms the baseline with a good margin and is more stable
in training due to its regularization in the output. Moreover,
we devised the Bayesian variant (as in Sect. 3.3) to compute
the predictive distribution and pick the one with the highest
confidence according to Eq. 9 (highest mean plus standard
deviation). Since the space of answers generated is typically
large even with pre-training, performance of the generator
and discriminator can deteriorate. This is because the noisy
samples from the generator lead to decreased performance
in the discriminator.

In Table 4we show samples from the visual dialog dataset.
We evaluate the generated answers by sampling the discrim-
inator function and evaluating the variance of the prediction
(likelihood of the generated answer being human-response
in the log space). As is shown in the table, we observe the
variance of the prediction is generally higher for the wrong
responses. We can use a simple thresholding on the predic-
tive variance to determine the answers to be substituted by “I
don’t know”. For instance, in Table 4 we show an exam-
ple where a highly uncertain answer is substituted. Even
though for frequent answers such as yes/no responses the
variances are less reliable. In addition, for longer sentences,
the variances are generally higher. This is expected due to
the potential diversity.

4.4 Imitation Learning for Autonomous Driving

Success in reinforcement learning heavily relies on the effec-
tiveness of the reward function Ramachandran and Amir
(2007); Levine and Koltun (2013). Imitation learning meth-
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Table 4 Qualitative comparison from the visual dialog dataset

Q: is the train old?
A: i think so
Sample A: yes (0.03± 0.2)
Q: is the train moving?
A: no but it does have some
steam coming
Sample A: no (0.02± 0.1)

Q: is this in color ?
A: yes
Sample A: yes (0.1± 0.05)
Q: how old does the boy look?
A: he is not facing me, but
maybe
Sample A: 3 (0.1± 0.4)

Q: what vegetables are there?
A: carrots, cauliflower, broccoli
Sample A: carrots , carrots ,
and cucumbers (0.1± 0.01)
Q: what color is the table ?
A: dark brown
Sample A: white (0.1± 0.02)

(Q) is the question, (A) is the ground-truth human response, (Sample A): is the generated answer from the generator. Red response indicates lack
of confidence, which will be substituted by “I don’t know”

ods are designed to learn this reward function by utilizing
expert demonstrations and has succeeded in a wide range of
problems Ziebart et al. (2008); Englert and Toussaint (2015);
Stadie et al. (2017). Behavioral cloning that casts this prob-
lem as a supervised learning task typically demonstrates poor
generalization performance and as such imitation learning
has gained momentum.

Recently proposedGenerativeAdversarial ImitationLearn-
ing (GAIL, (Ho and Ermon 2016)) is a model-free imitation
learning method that is highly effective and scales to rela-
tively high dimensional environments. GAIL builds upon a
generative model: the stochastic policy coupled with a fixed
simulation environment produces behaviors as similar as pos-
sible to that of the expert demonstrations. The discriminator
distinguishes the expert trajectories from ones produced by
the generator’s as in GANs.

Human is typically the expert that produces the examples
for the imitation learning. The high-dimensional nature of
these examples along with the variability in expert’s demon-
strations make this problem challenging. Specifically when
the input is visual, the policy needs to simultaneously learn
how to identify meaningful visual features, and how to lever-
age them for achieving desired behaviors using a small set of
expert demonstrations. In addition, evaluation of the likeli-
hoodof the policies allowsbetter reward formulationwhich is
challenging in such problems. In addition, since such learnt
rewards are uncertain in nature being able to quantify the
confidence in predictions allows for actions that are more
desirable.

It should be noted that the generator’s objective in our
approach can produce particularly ineffective trajectories
because the generator seeks to model low-frequency areas
as well. This means when the policy makes a small mistake,
the generator deviates from the state distribution seen during

training, making it more likely to make a mistake again. In
particular, when the expert data has a larger variance. One
way for handling this problem is to gradually sample more
from the generator rather than data during training. In addi-
tion, we draw 5 samples from the generator and pick themost
likely one.

For experiments, similar to Li et al. (2017), we consider
an autonomous driving example implemented using TORCS
driving simulator Espié et al. (2000).We evaluate two subsets
of human driving behaviors: turn or pass. Turn behavior can
be either inside or outside the land and pass is either from
the left or right. In both cases, the expert’s policy has two
significant modes. Our objective is for the algorithm to be
able to distinguish the modes in the expert’s demonstrations.

We use a pre-trained deep residual net (He et al. 2016)
to extract the visual features and use as inputs for the pol-
icy network. Similar to Li et al. (2017), we use a discrete
value to model turn or pass policies and optimize its mutual
information based on InfoGAN’s method (Chen et al. 2016).
For both settings, there are 80 expert trajectories in total,
with 100 frames in each trajectory. In the initial stage, both
passes and turns are equally likely (uniformdistribution). The
generator produces samples of the state-action pairs for the
density estimator to evaluate their likelihood. Subsequently,
the likelihood of the trajectories being expert’s is maximized
through which we estimate the normalizer and learn to pro-
duce high-quality trajectories in the generator. The samples
in this experiment are the state-action pairs. Our approach
uses trust region policy optimization (TRPO) Schulman et al.
(2015) in updating the generator parameters that allows for
better policies.

The performance of policies is evaluated using two met-
rics: accuracy as the percentage of correctly predicted
expert’s state-action pairs, and the average distance which
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Table 5 Classification accuracy for pass trajectories

Method Accuracy

PCA Li et al. (2017) 61.7%

InfoGAIL Li et al. (2017) 81.9%

GADE 81.6%

GADE Bayesian 82.6%

They are the results from our method and have the highest value

Table 6 Average rollout distances for imitation learning

Method Avg. rollout distance

Behavior cloning 701.83

GAIL (Ho and Ermon 2016) 914.45

WGAN 1177.72

InfoGAIL (Li et al. 2017) 1226.68

GADE 1223.13

GADE Bayesian 1228.21

Human 1203.51

They are the results from our method and have the highest value

determines the distance traveled by the agent before a colli-
sion. We perform reward augmentation similar to (Li et al.
2017) to discourage the car from crashing early.

We sample zi s with state-action pairs from the expert tra-
jectories and calculate the accuracy of the correctly predicted
state. The results are shown in Table 5. Interestingly, without
supervised training, our approach correctly classifies expert
trajectories. The average rollout distances are shown in Table
6.Ourmethod is able to outperform the expertwhileWGANs
perform worse.

5 Conclusion

In this paper, we introduced generative adversarial density
estimator. Our approach estimates the density of data using
a lower bound on its normalizer. We formalized the problem
as a maximum likelihood for the density estimator in which
a transformation function generates samples for approximat-
ing the normalizer. We showed that having a density model
and the prior on the parameters, we are able to build a
Bayesian alternative using which we can measure our con-
fidence in the likelihood. Our experiments on challenging
applications such as image density or visual dialog where
both the likelihood and confidence in predictions are cru-
cial shows the effectiveness of our approach. Moreover, the
samples drawn from the estimated density is less susceptible
to mode collapse which is a desired property for generative
models.

We believe our approach opens new avenues for further
research in density estimation and its marriage with adver-
sarial models.

Proof of Lemma 2

Proof Since B is a positive definite matrix with ‖B‖2 < 1,
it follows that,

log det A = log(αd det(A/α))

= d log(α) + log

⎛
⎝ d∏
i=1

λi (B)

⎞
⎠

= d log(α) +
d∑

i=1

log(λi (B)) = d log(α) + tr (log (B)) .

where λi (B) is the i th eigenvalue of the matrix B. We know
for the second line that

tr (log (B)) =
d∑

i=1

λi (log (B)) =
d∑

i=1

log(λi (B)).

Then we have,

tr (log (B)) = tr (log ((B − Id) + Id)) (10)

= tr

( ∞∑
k=1

(−1)k+1 (B − Id)k

k

)
. (11)

For the second equality we use Taylor expansion of the log
since all the eigenvalues of B − Id are in (0, 1) and the last
equality follows by the linearity of the trace operator. ��

References

Arjovsky, M., Chintala, S., Bottou, L. (2017). Wasserstein gan.
arXiv:1701.07875.

Ben-Israel, A. (1999). The change-of-variables formula using matrix
volume.SIAMJournal onMatrixAnalysis andApplications,21(1),
300–312. https://doi.org/10.1137/S0895479895296896.

Boutsidis, C., Drineas, P., Kambadur, P., Kontopoulou, E. M., &
Zouzias, A. (2017). A randomized algorithm for approximating
the log determinant of a symmetric positive definite matrix. Lin-
ear Algebra and its Applications, 533, 95–117.

Burda, Y., Grosse, R., Salakhutdinov, R. (2015). Importance weighted
autoencoders

ChenX,DuanY,HouthooftR, Schulman J, Sutskever I,Abbeel P (2016)
Infogan: Interpretable representation learning by informationmax-
imizing generative adversarial nets. CoRR abs/1606.03657

Das,A.,Kottur, S., Gupta,K., Singh,A.,Yadav,D.,Moura, J.M., Parikh,
D., & Batra, D. (2017). Visual Dialog. In Proceedings of the IEEE
conference on computer vision and pattern recognition (CVPR).

123

http://arxiv.org/abs/1701.07875
https://doi.org/10.1137/S0895479895296896


2742 International Journal of Computer Vision (2020) 128:2731–2743

Diggle, P. J., & Gratton, R. J. (1984). Monte Carlo methods of infer-
ence for implicit statistical models. Journal of the Royal Statistical
Society, 46, 193–227.

Dinh, L., Krueger, D., & Bengio, Y. (2014). Nice: Non-linear indepen-
dent components estimation. CoRR,. abs/1410.8516.

Dinh, L., Sohl-Dickstein, J., & Bengio, S. (2016). Density estimation
using real nvp.

Dumoulin, V., Belghazi, I., Poole, B., Mastropietro, O., Lamb, A.,
Arjovsky, M., & Courville, A. (2017). Adversarially learned infer-
ence. In International conference on learning representation.

Englert, P., & Toussaint, M. (2015). Inverse kkt–learning cost functions
of manipulation tasks from demonstrations. In Proceedings of the
international symposium of robotics research.

Espié, E., Wymann, B., Dimitrakakis, C., Guionneau, C., Coulom, R.,
& Sumner, A. (2000). Torcs, the open racing car simulator. http://
torcs.sourceforge.net.

Finn, C., Christiano, P.F., Abbeel, P.,& Levine, S. (2016). A connection
between generative adversarial networks, inverse reinforcement
learning, and energy-based models. CoRR, arXiv:1611.03852

Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley,
D., Ozair, S., Courville, A.,&Bengio, Y. (2014). Generative adver-
sarial nets. In International conference on neural information
processing systems.

Gregor, K., Danihelka, I.,Mnih, A., Blundell, C., &Wierstra, D. (2014).
Deep autoregressive networks. In The international conference on
machine learning (icml).

Grover, A., Dhar, M., & Ermon, S. (2018). Flow-gan: Combining max-
imum likelihood and adversarial learning in generative models.
In Proceedings of the thirty-second AAAI conference on artifi-
cial intelligence, (AAAI-18), the 30th innovative applications of
artificial intelligence (IAAI-18), and the 8th AAAI symposium on
educational advances in artificial intelligence (EAAI-18), New
Orleans, Louisiana, USA, February 2–7, 2018 (pp. 3069–3076).

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., & Courville,
A. C. (2017). Improved training of wasserstein gans. CoRR,.
abs/1704.00028.

Gutmann, M. U., Dutta, R., Kaski, S., & Corander, J. (2018).
Likelihood-free inference via classification. Statistics and Com-
puting, 28, 411–425.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning
for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition.

Ho, J.,& Ermon, S. (2016). Generative adversarial imitation learning.
In Advances in neural information processing systems.

Jang, E., Gu, S., & Poole, B. (2016). Categorical reparameterization
with gumbel-softmax. CoRR.

Karras, T., Aila, T., Laine, S., & Lehtinen, J. (2017). Progressive grow-
ing of gans for improved quality, stability, and variation. In The
international conference on learning representations (ICLR).

Kingma, D.P., Welling, M. (2014). Auto-encoding variational bayes. In
The international conference on learning representations (ICLR).

Kolesnikov, A.,& Lampert, C. H. (2017). PixelCNN models with aux-
iliary variables for natural image modeling. In Precup D., & Teh
Y.W. (eds) Proceedings of the 34th international conference on
machine learning, PMLR, international convention centre, Syd-
ney, Australia, Proceedings of Machine Learning Research (Vol.
70, pp. 1905–1914).

Konda, V. R., & Tsitsiklis, J. N. (2004). Convergence rate of linear
two-time-scale stochastic approximation. The Annals of Applied
Probability, 14(2), 796–819.

Krizhevsky, A., & Hinton, G. (2009). Learning multiple layers of fea-
tures from tiny images.

Levine, S., & Koltun, V. (2013). Guided policy search. In International
conference on machine learning.

Li, Y., Song, J., & Ermon, S. (2017). Infogail: interpretable imi-
tation learning from visual demonstrations. arXiv preprint
arXiv:1703.08840.

Lin, T. Y., Michael, M., Serge, B., James, H., Pietro, P., Deva, R., Piotr,
D., & Lawrence, Z. C. (2014).Microsoft coco: Common objects in
context. In Computer vision–ECCV 2014, Berlin: Springer Inter-
national Publishing.

Liu, Z., Luo, P., Wang, X., & Tang, X. (2015). Deep learning face
attributes in the wild. In Proceedings of international conference
on computer vision (ICCV).

Lu, J., Yang, J., Batra, D., & Parikh, D. (2016). Hierarchical question-
image co-attention for visual question answering. In Proceedings
of the 30th international conference on neural information pro-
cessing systems, Curran Associates Inc., USA, NIPS’16 (pp
289–297). http://dl.acm.org/citation.cfm?id=3157096.3157129.

Lu, J., Kannan, A., Yang, J., Parikh, D., Batra, D. (2017). Best of both
worlds: Transferring knowledge from discriminative learning to a
generative visual dialog model. NIPS.

Maaløe, L., Sønderby, C. K., Sønderby, S. K., Winther, O. (2016).
Auxiliary deep generative models. In Proceedings of the 33rd
international conference on international conference on machine
learning, ICML’16 (pp. 1445–1454).

Maddison, C. J., Mnih, A., Teh, Y.W. (2016). The concrete distribution:
A continuous relaxation of discrete random variables. CoRR.

Martens, J. (2010). Deep learning via hessian-free optimization. In
Proceedings of the 27th international conference on international
conference on machine learning, Omnipress, Madison, WI, USA,
ICML–10, pp. 735–742.

Metz, L., Poole, B., Pfau, D., & Sohl-Dickstein, J. (2016). Unrolled
generative adversarial networks. International Conference on
Learning,. Representations.

Nguyen, A., Clune, J., Bengio, Y., Dosovitskiy, A., & Yosinski, J.
(2017). Plug & play generative networks: Conditional iterative
generation of images in latent space. In Proceedings of the IEEE
conference on computer vision and pattern recognition, IEEE.

Nowozin, S., Cseke, B., & Tomioka, R. (2016). f-GAN: Training gener-
ative neural samplers using variational divergence minimization.
arXiv:1606.00709.

Oord, A., Kalchbrenner, N., Vinyals, O., Espeholt, L., Graves, A.,
Kavukcuoglu,K. (2016). Conditional image generationwith pixel-
cnn decoders. In Proceedings of the 30th international conference
on neural information processing systems, NIPS’16 (pp. 4797–
4805).

Pfau, D., & Vinyals, O. (2016). Connecting generative adversarial net-
works and actor-critic methods. CoRR. abs/1610.01945.

Price, B., & Boutilier, C. (2003). A bayesian approach to imitation in
reinforcement learning. In Proceedings of the 18th international
joint conference on artificial intelligence IJCAI’03 (pp. 712–717).

Radford, A.,Metz, L., Chintala, S. (2015). Unsupervised representation
learning with deep convolutional generative adversarial networks.
CoRR

Ramachandran, D., Amir, E. (2007). Bayesian inverse reinforcement
learning. In Proceedings of the 20th international joint conference
on artifical intelligence, IJCAI’07 (pp. 2586–2591).

Rezende, D.J., & Mohamed, S. (2015). Variational inference with
normalizing flows. In Proceedings of the 32nd international
conference on international conference on machine learning,
JMLR.org, ICML’15 (pp 1530–1538).

Saatchi, Y., & Wilson, A. G. (2017). Bayesian GAN. In Advances in
neural information processing systems.

Salakhutdinov, R., & Hinton, G.E. (2009). Deep boltzmann machines.
In International conference on artificial intelligence and statistics,
AISTATS’09.

Salimans, T., Karpathy, A., Chen, X., & Kingma, D.P. (2017). Pix-
elcnn++: A pixelcnn implementation with discretized logistic

123

http://torcs.sourceforge.net
http://torcs.sourceforge.net
http://arxiv.org/abs/1611.03852
http://arxiv.org/abs/1703.08840
http://dl.acm.org/citation.cfm?id=3157096.3157129
http://arxiv.org/abs/1606.00709


International Journal of Computer Vision (2020) 128:2731–2743 2743

mixture likelihood and other modifications. In The international
conference on learning representations (ICLR).

Schulman, J., Levine, S., Moritz, P., Jordan, M.,& Abbeel, P. (2015).
Trust region policy optimization. In Proceedings of the 32nd
international conference on international conference on machine
learning (Vol. 37, pp 1889–1897).

Serban, I.V., Sordoni, A., Bengio, Y., Courville, A.,& Pineau, J. (2016).
Building end-to-end dialogue systems using generative hierarchi-
cal neural networkmodels. InProceedings AAAI (pp .3776–3783).

Shetty, R., Rohrbach, M., Hendricks, L. A., Fritz, M., & Schiele, B.
(2017). Speaking the same language: Matching machine to human
captions by adversarial training. CoRR,. abs/1703.10476.

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional net-
works for large-scale image recognition. arXiv.

Stadie, B., Abbeel, P., & Sutskever, I. (2017). Third person imitation
learning. In International conference in learning representation.

Theis, L., van den Oord, A., & Bethge, M. (2015). A note on the eval-
uation of generative models. ArXiv e-prints, 1511, 01844.

Wang, T. C., Liu, M. Y., Zhu, J. Y., Tao, A., Kautz, J., & Catanzaro, B.
(2017). High-resolution image synthesis and semantic manipula-
tion with conditional gans.

Welling, M., & Teh, Y. W. (2011). Bayesian learning via stochastic gra-
dient langevin dynamics. In Proceedings of the 28th international
conference on international conference on machine learning (pp
681–688).

Zhang, H., Xu, T., Li, H., Zhang, S., Wang, X., Huang, X., & Metaxas,
D. (2017). Stackgan: text to photo-realistic image synthesis with
stacked generative adversarial networks. In: ICCV.

Zheng, G., Yang, Y., & Carbonell, J. (2017). Likelihood almost free
inference networks.

Zheng, G., Yang, Y., & Carbonell, J. (2018). Convolutional normalizing
flows. In ICML workshop on theoretical foundations and applica-
tions of deep learning.

Ziebart, B. D., Maas, A., Bagnell, J. A.,& Dey, A. K. (2008). Maximum
entropy inverse reinforcement learning. InProceedings of the 23rd
national conference on artificial intelligence (Vol. 3, AAAI’08).

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123


	GADE: A Generative Adversarial Approach to Density Estimation and its Applications
	Abstract
	1 Introduction
	2 Related Work
	3 Generative Adversarial Density Estimator
	3.1 Adversarial Formulation
	3.2 Main Algorithm
	3.3 Bayesian Extension
	3.4 Mode Collapse

	4 Experiments
	4.1 Simulation
	4.2 Image Generation and Density Estimation
	4.3 Uncertainty in Visual Question Answering 
	4.4 Imitation Learning for Autonomous Driving

	5 Conclusion
	Proof of Lemma 2
	References




