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Abstract

Generalization beyond the training distribution is a core
challenge in machine learning. The common practice of
mixing and shuffling examples when training neural net-
works may not be optimal in this regard. We show that parti-
tioning the data into well-chosen, non-i.i.d. subsets treated
as multiple training environments can guide the learning of
models with better out-of-distribution generalization. We
describe a training procedure to capture the patterns that
are stable across environments while discarding spurious
ones. The method makes a step beyond correlation-based
learning: the choice of the partitioning allows injecting in-
formation about the task that cannot be otherwise recovered
from the joint distribution of the training data.

We demonstrate multiple use cases with the task of visual
question answering, which is notorious for dataset biases.
We obtain significant improvements on VQA-CP, using envi-
ronments built from prior knowledge, existing meta data, or
unsupervised clustering. We also get improvements on GQA
using annotations of “equivalent questions”, and on multi-
dataset training (VQA v2 / Visual Genome) by treating them
as distinct environments.

1. Introduction
The best of machine learning models can sometimes be

right for the wrong reasons [2, 21, 26, 69]. The ubiqui-
tous paradigm of empirical risk minimization (ERM) pro-
duces models that capture all statistical patterns present in
the training data1. However, not all of these patterns are re-
liable and reflective of the task of interest. Some of them
result from confounding factors, sampling biases, and other
annotation artifacts specific to a given dataset. We call these
patterns spurious2 and a model that relies on them will gen-

1 We use patterns and correlations interchangeably to refer to statisti-
cal relationships between observed random variables, typically the input(s)
and output(s) of a supervised learning task.

2 The literature also uses dataset biases to refer to spurious correlations
between inputs and outputs that are dataset-specific [69].
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Figure 1. Datasets for visual question answering contain biases
and spurious correlations: the first few words of a question are as-
sociated with a peaky distribution over answers (blue histograms).
Models that guess their answers using these correlations gener-
alize poorly. We improve by partitioning the data into multi-
ple training environments across which the spurious correlations
vary (green histograms) while reliable correlations are stable. Our
training procedure produces a model that relies on these stable cor-
relations such that it generalizes much better at test time.

eralize poorly to test data obtained in different conditions
(i.e. out-of-distribution or OOD data).

The limits of ERM on OOD data are oftentimes over-
looked and eclipsed by the common practice of evaluating
on test data i.i.d. to the training data – a central assumption
of classical learning theory [70]. The awareness of these
limits has grown with that of their practical implications,
from poor transfer across datasets [69] to biases and fair-
ness issues [1] and vulnerability to adversarial inputs [27].
As a result, benchmarks with OOD test sets are becoming
increasingly common in vision and NLP [2, 4, 9, 29, 37, 44].
This paper presents a training paradigm to improve OOD
generalization.

The study of generalization in computer vision has a
long history [20, 41, 48]. The rise in popularity of high-
level tasks like visual question answering (VQA) [7], vi-
sual dialogue [19], or vision-and-language navigation [6]
has made the topic even more important. The complex-
ity of these tasks and the combinatorial explosion of the
size of their input domain make it impossible to process
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training data densely spanning this space. Models trained
with ERM are then more likely to latch on spurious corre-
lations (because they are often easier to fit [58]) rather than
on the true reasoning process that underlies the task [36].
VQA was shown empirically to be a prime example of
this issue. Many methods have been proposed to address
it [2, 13, 17, 27, 29, 47, 55].

We propose a general method to improve OOD gen-
eralization. We discourage the model from using spurious
correlations that only appear in subsets of the training data,
and rather ensure that it uses reliable ones that are more
likely to generalize at test time. More precisely, we first
partition the data into multiple training environments [8]
such that spurious correlations vary across environments
while reliable ones remain stable. We later describe mul-
tiple strategies to build such environments, using unsuper-
vised clustering, prior knowledge, and auxiliary annotations
in existing datasets. Second, we train multiple copies of a
neural network, one per environment. Some of their weights
are shared across environments, while others are subject
to a variance regularizer in parameter space. This leads
the model to extract features that are stable across envi-
ronments (i.e. features that do not represent environment-
specific properties) since they are optimized to be predictive
under a classifier common to all environments (as encour-
aged by the variance regularizer). Additional intuitions and
reasons why this approach is superior to ERM are discussed
in Section 3.3.

We provide empirical evidence of improvements in
three distinct use cases on the task of VQA. First, we
demonstrate improved resilience to language biases with
VQA-CP [2]. Second, on GQA [34], we show how to use
annotations of equivalent questions (some training ques-
tions being rephrasings of others). We obtain substantial
gains over simple data augmentation with these equivalent
questions in a small-data regime. Third, we show a small
benefit in training a model on multiple datasets by treating
VQA v2 [26] and Visual Genome QA [42] as two environ-
ments rather than one aggregated dataset. Of these three use
cases, the first is the most well-studied but our method has
a much wider scope than the VQA-CP dataset.
The contributions of this paper are summarized as follows.
1. We propose to partition existing datasets into training en-

vironments to improve generalization. We describe the
requirements for the partitioning and a procedure to train
neural networks to rely on stable correlations across en-
vironments while ignoring spurious ones.

2. We apply the method to three use cases with the task of
VQA: (1) resilience to language biases, (2) leveraging
known relations of equivalence between specific training
questions, and (3) multi-dataset training.

3. We provide empirical evidence of clear improvements
and a extensive sensitivity analysis to hyperparameters

and implementation choices.

2. Related work
This paper touches on fundamental aspects of machine

learning and so is related to many existing works.
Dataset biases in vision-and-language tasks. Several
popular datasets used in vision-and-language [25] and nat-
ural language processing [76] have been shown to exhibit
strong biases. A model trained naively on these datasets
can exhibit surprisingly good performance by relying on
dataset-specific biases without capturing the true mecha-
nisms of the task. On the evaluation side, there is a trend
towards out-of-distribution test data to better identify this
behaviour (e.g. [2, 4, 9, 29, 37, 44, 76]).
Invariances and generalization. Resilience to dataset bi-
ases cannot be solved by simply collecting more data from
the same distribution, since it would still contain the same
unreliable patterns. The data collection process can be
improved [25, 76, 77] but this option only addresses pre-
cisely identified biases and confounders. Improving gener-
alization requires to bring in information (often implicitly)
about the mechanisms of the task of interest that go beyond
what is represented by the joint distribution of the train-
ing data (see discussion Section 3.3). Common methods
include architecture design and data augmentation [43, 63]
to specify input transformations the model should be invari-
ant to. This helps ignoring spurious correlations and im-
proves generalization but it requires explicit knowledge of
desirable invariances. In comparison, our method discov-
ers invariances implicitly. We train a model to rely on input
features that are similarly predictive (i.e. invariant) across
environments. The required expert knowledge is displaced
to the specification of the partitioning into environments.
Aggregating datasets. Using training data collected in
different conditions is often beneficial for generalization
(e.g. in [66] for VQA) because biases in each dataset are
likely different and they can “cancel each other out”. We
argue however that treating aggregated datasets as a collec-
tion of samples from a unique distribution loses valuable
information. Our method treats them as distinct training
environments and seeks to identify patterns that are simi-
larly predictive across them while discarding those that are
dataset-specific. Khosla et al. [41] also showed that ac-
counting for bias when combining datasets was beneficial
for generalization.
Domain adaptation and domain generalization. Train-
ing a model under multiple environments is reminiscent of
domain adaptation [22]. But our objective is not to adapt to
one particular target domain but rather to generalizes across
a range of unknown conditions. Our setup is more similar to
the recently-introduced terminology of domain generaliza-
tion [72, 28, 72]. These methods specifically target image
recognition benchmarks like PACS and VLCS.
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Ensembles. Our method trains multiple copies of a model
in parallel, which is superficially similar to ensembling [79]
and bootstrap aggregation a.k.a. bagging [12]. Traditional
ensembles however combine models in output space. We
combine models in parameter space3. We show empiri-
cally that the improvements from our approach are distinct
from (and complementary to) those of traditional ensem-
bling. Bagging uses uniform sampling, whereas the point
of our method is to exploit prior knowledge to build the
training environments.
Robustness in VQA. State-of-the-art models for VQA
have been shown to be strongly reliant language biases.
Benchmarks have been designed to better study the is-
sue [2, 34, 38]. VQA-CP [2] allows out-of-distribution
evaluation, where the joint distribution of questions and an-
swers is different in the training and test sets. Methods
have been proposed with strong improvements on VQA-
CP ([13, 17, 27, 29, 47, 55] among others). However,
many were been shown to cheat the evaluation by exploit-
ing knowledge of the construction of VQA-CP that should
have been kept private [67]. In [65], the authors use counter-
factual examples to learn which input features to focus on.
This is comparable to our method in that we learn by con-
trasting training environments, whereas [65] proceeds at the
instance level. In [64], the authors exploited auxiliary an-
notations of the GQA dataset to improve robustness, which
we also use in some of our experiments.
Fair and bias-resilient machine learning. Addressing
dataset biases is also motivated by issues of fairness [1, 31,
73, 78]. These works aim to build predictive models that are
invariant to specific attributes of the input, such as gender
or ethnicity. These attributes need to be specified and an-
notated, which is very limiting. For example in VQA, there
is a known desired invariance to some linguistic patterns in
the question, but their exact form is not known and cannot
be annotated as a discrete attribute.
Invariant risk minimization. This paper is strongly
inspired the principle of invariant risk minimization
(IRM) [8]. Arjovsky et al. showed how training un-
der multiple environments can improve OOD generaliza-
tion. Our contributions over [8] are threefold: an alterna-
tive, easy-to-train implementation, an application to a real
large-scale dataset, and demonstrations of how to obtain
training environments. Other implementations were pro-
posed [3, 14, 16, 35] but mostly demonstrated on toy data.
Theoretical and empirical comparisons of variants of IRM
are missing pieces to address in the future. Creager et al.
[18] attempted unsuccessfully to discover environments au-
tomatically for IRM. Their failure, even on toy data, sup-
ports the view that the true source of improvements is in the
information used to obtain or create the environments.

3 Averaging predictions or final weights is equivalent with a linear clas-
sifier. It is not in our case of a non-linear output.

Learning from groupings of data has been studied from
statistical [11, 30] and causal [49, 57] points of view.
Heinze-Deml and Meinshausen [30] used a variance reg-
ularizer on predictions across versions of an example, such
as multiple photos of a same individual. Our variance regu-
larizer, in comparison, acts on the parameters of the model.
And we do not require correspondences between specific
training examples. [20] is another classic work using a vari-
ance regularizer for multi-task learning. And Vasilescu et
al. [71] were among the first to compute invariant represen-
tations for the causal factors of image formation, which they
did for face recognition and human motion signatures.

3. Proposed approach

3.1. Partitioning data into training environments

The main intuition behind our method is that the train-
ing data contains both reliable and spurious correlations be-
tween inputs and labels, and that it is sometimes possible to
partition the data into “training environments” in which the
strength of the spurious ones is affected more than the reli-
able ones. We then train a model to rely on the correlations
that are stable across environments. The corollary is that it
ignores the environment-specific spurious ones.

As an example in VQA, let’s imagine the question What
animal is in the picture ? A reliable correlation is the pres-
ence of canines in images that have dog as answer. An ex-
ample of a spurious correlation is that most questions start-
ing with What sport... have tennis as answer. A model that
relies on this correlation irrespective of image contents or of
the rest of the question will generalize poorly. This spuri-
ous correlation results from annotation and selection biases.
Conceivably, data collected from two groups of annotators
will exhibit different biases, e.g. one group mostly picking
images with tennis as the answer, the other football. Our ap-
proach identifies such groupings of the data as training envi-
ronments then trains a model that uses the correlations that
are stable (i.e. similarly predictive) across environments.

Concretely, we partition the training set T ={(xi,yi)}i
of inputs xi and labels yi (one-hot vectors in a classifica-
tion task) into E disjoint training environments Te such that⋃E

e=1 Te = T . The environments are built to isolate the ef-
fect of spurious correlations, such that only the strength of
reliable correlations remains stable across all environments.
We provide additional justification for the principle in Sec-
tion 3.3 and we describe strategies to build environments
from existing datasets in Section 4. We show that they
can be built by unsupervised clustering, by injecting prior
knowledge, and by leveraging auxiliary annotations from
existing datasets. Next, we describe how to train a model
across environments to rely on stable correlations while ig-
noring spurious ones.
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3.2. Training over multiple environments

Our goal is to learn a predictive model Φ that maps an
input x to an output ŷ =Φ(x) such as a vector of class prob-
abilities in a classification task. We represent the model as
the combination of a feature extractor and a subsequent lin-
ear classifier. The feature extractor fθ(x) (typically with a
deep neural network) uses parameters θ to extract a vec-
tor h= fθ(x). The subsequent linear classifier is a ma-
trix of weights W and the whole model is described as
Φ(x)=Wfθ(x) . The standard training procedure is to op-
timize θ and W for maximum likelihood on the training set
T under a loss L, i.e. solving the following optimization
problem:

argmin
θ,W

Σ(x,y)∈T L
(
Wfθ(x),y

)
. (1)

In our method, assuming a prior definition of training en-
vironments Te (see Section 3.1), we want to train the model
to be highly predictive on the training environments as well
as on an OOD test set, in which only the input/output corre-
lations common to all training environments can be assumed
to hold. We train a different model Φe(x)=We fθ(x) for
each environment. The feature extractor fθ(·) is shared,
such that it identifies features common to all environments.
But a different classifier We is optimized for each environ-
ment. We want the features extracted by fθ(·) to be stable,
i.e. similarly predictive across environments. For this, we
choose to encourage the parameters of the classifiers We to
converge to a common value. This is naturally implemented
by minimizing their variance over e=1..E.

At test time, we use Φ⋆(x)=W̄ f(x), where W̄ is the
arithmetic mean of We over e. Since the variance regular-
izer brings all We toward a common value during training,
the arithmetic mean is a natural choice. The complete opti-
mization task is defined as:

argmin
θ,W

Σe Σ(x,y)∈Te
L
(
Wefθ(x),y

)
+ λVar

e
(We)

(2)
where λ is a scalar hyperparameter, W = {We}Ee=1, and
Vare(We) is the variance of classifier weights. The stan-
dard definition of the variance gives

Var
e
(We) = (1/E) Σe ||We − W̄||2 (3)

with W̄ = (1/E) ΣeWe . (4)

We refer to this definition as the “absolute variance” in our
experiments. Finding a unique best value for λ in Eq. 2
proved difficult because the magnitude of the weights can
vary widely during the early stages of the optimization. As
a remedy, we use a relative measure of variance that rescales
each term by the weights’ magnitude:

Var
e
(We) = (1/E) Σe

(
||We − W̄||2/∥We∥1

)2
(5)

Feature
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Linear
classifier

Outputs

Training
environment 1

Inputs
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Figure 2. During training, we optimize a different copy of the
model under each environment (each sees a different subset of the
data). Two environments are pictured but our experiments use up
to 18. The objective is to have the model rely on statistical patterns
that are stable across environments. The weights of the feature ex-
tractor (θ) are shared across environments, those of the classifier
(We) are not. A regularizer encourages the latter to converge to
a unique solution simultaneously optimal across environments. At
test time, we use the arithmetic mean of these weights W̄.

It slightly improves our results (see Table 1) and makes λ
easier to tune. We also found small improvements in opti-
mizing Eq. 2 alternatively: one mini-batch serves to update
θ, another one to update W, repeating until convergence.
It slightly improves the final accuracy but it is not crucial
to the method and was only used in select experiments re-
ported in Table 1.

3.3. Why it works

This section discusses further connections with existing
methods and formal interpretations of generalization.

Causal view of generalization. Improving generalization
requires distinguishing dataset-specific artifacts from the
actual mechanisms of the task of interest. A causal view
of generalization formalizes this as identifying causal prop-
erties4 of the data-generating process behind the observed
data [8, 53]. A critical outcome of this formalization is that
such causal properties are provably impossible to recover
solely from the joint distribution over inputs and outputs
that a standard training set represents. In other words, spu-
rious and reliable correlations cannot be distinguished from
one another.

Common avenues for bringing the missing informa-
tion include architecture design (setting a prior on the
causal structure), data augmentation (defining invariances
in the input domain) and other task-specific inductive bi-
ases. Our method falls in another category that seeks to ex-
ploit implicit training signals found unexploited in existing
datasets [8, 65, 30, 39]. More specifically, we use multiple

4 We do not claim to identify a causal model, we only aim at producing
a predictive model. The causal formalization only serves to highlight that
properties relevant to OOD generalization cannot be recovered from the
joint distribution represented by a standard dataset, but can be informed by
training across well-chosen environments.

1420



training environments. These emerge naturally in data col-
lected from multiple annotators, sites, or annotation inter-
faces. Data points are usually collated into a single dataset,
but this loses information. Our premise is that such environ-
ments elicit different spurious correlations without affecting
the reliable patterns inherent to the task of interest.

The fact that observational data from multiple environ-
ments can be informative about causal properties of the data
generating process may seem at odds with basic principles
of causal reasoning [50]. This is resolved when considering
each environment as an intervention on the data generating
process. Assuming these interventions only act on variables
spuriously correlated with the output (hence the importance
of a well-chosen partitioning), the causal mechanisms be-
tween non-intervened variables and the output will remain
unchanged by the principle of independent causal mecha-
nisms [54]. The statistical patterns inherent to the task thus
remain stable across environments.

Source of improvements. The improvements obtained
through our method therefore hinge on the information
used to obtain training environments (e.g. multiple exist-
ing datasets) or to create them by “unshuffling” an existing
dataset. The latter requires the practitioner to bring in meta
knowledge about the task or dataset, such as axes along
which to cluster the data. Conversely, environments made
as random partitions are not expected to bring any benefit,
as verified in our experiments (see Table 1).

Invariant risk minimization. Our training procedure is
inspired by the principle of invariant risk minimization
(IRM) [8]. IRM proposes to identify a representation of
data such that the optimal classifier, on top of this repre-
sentation, is identical across environments. Formally, using
our notations, this amounts to optimizing the feature extrac-
tor fθ(·) and linear classifier W for the following objective:

min
θ,W

Σe Σ(x,y)∈Te
L
(
W⋆fθ(x),y

)
(6)

s.t. W⋆ ∈ argmin
W

Σ(x,y)∈Te
L
(
Wfθ(x),y

)
, ∀ e. (7)

The constraint on W⋆ is the crux of the principle. A
classifier that is optimal in a given environment can only
use the features that are reliable predictors in that environ-
ment. Requiring the classifier W⋆ to be simultaneously
optimal across all environments (i.e. at the intersection of
all environment-specific optima) means that it can only use
stable features. In other words, consider a spurious correla-
tion, specific to an environment e, between the output labels
and a feature x̃. A model (feature extractor and classifier)
trained in isolation on e would use this feature x̃. However,
this spurious correlation does not hold in another environ-
ment e′. Even though the shared feature extractor could
extract some semblance of the feature x̃ in e′, this feature

will not be predictive in the same way as in e. Therefore,
the optimal classifier in e′ will not use x̃ in the same way.
Since we are looking for a unique classifier that is simul-
taneously optimal in e and e′, the shared feature extractor
must ignore this unreliable feature, and only extract those
that are similarly predictive across environments.
Proposed method and IRM. The objective of Eq. 7 in-
volves an impractical nested optimization. The approxi-
mation proposed in [8] replaces the constraint with a reg-
ularizing term in the objective that uses the gradient of the
environment-specific risk with respect to the classifier. The
resulting objective is highly non-convex and has been re-
ported to be difficult to train in practice. Our method (Eq. 2)
uses the variance of We as a regularizer. The gradient of
the risk in [8] is motivated as a measure of “how optimal”
a classifier is. Our version operates directly in the parame-
ter space of the classifier. Following Section 3.2, stationary
points that satisfy the IRM principle are also solutions to our
optimization problem, although the converse is not true, so
further work is warranted to determine conditions in which
guarantees discussed in [8] possibly hold with our formula-
tion. Our results are only empirical but showed it to be very
stable during training and highly effective in our use cases.

Finally, recent breakthrough theoretical [40] and em-
pirical results [60] proved identifiability in non-linear ICA
when the generating process is a conditional distribution of
which the conditioning variable is observed. This setting is
analogous to training across environments with the environ-
ment ID interpreted as the conditioning variable. Further
work is needed to establish formal connections with these
results.

4. Experiments
We present three applications on the task of VQA, which

is notorious for dataset biases. Our strongest results are
with the VQA-CP dataset [2] which is designed to test out-
of-distribution generalization. The other two application
use GQA [34], and VQA v2 [25] combined with Visual
Genome QA [42]. The quantitative improvements in these
other two applications are smaller but they demonstrate the
wider applicability of the method. Most other methods in
Table 2 are specific to VQA-CP.
Implementation. We implemented the method on top of
the “bottom-up and top-down attention” model [66] (details
in supp. mat.) since it serves as the baseline of most com-
peting techniques on VQA-CP [13, 17, 27, 29, 47, 55]. Our
method should readily apply to recent models [15, 23, 24,
45, 46, 61, 75] including those with stronger baseline per-
formance on GQA [32, 33]. Evaluations on VQA-CP fol-
low the guidelines of Teney et al. [67], including perform-
ing ablations on “Other” questions only, and reporting both
in-domain and OOD performance without retraining. Our
results are also averaged across multiple runs (thus not to
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outcome of one possibly-lucky random seed) unlike most
results reported in the literature.

4.1. Robustness to language biases (VQA-CP)

Experimental setup. The VQA-CP dataset [2] was con-
structed by reorganizing VQA v2 [25] such that the cor-
relation between the question type and correct answer dif-
fers in the training and test splits. For example, the most
common answer to questions starting with What sport... is
tennis in the training set, but skiing in the test set. A model
that guesses an answer primarily from the question will per-
form poorly. In our experiments, we report the accuracy
on the official test set, but also on a validation set that we
built by holding out 8,000 random instances from the train-
ing set. This serves as to measure “in-distribution” perfor-
mance, while the test set serves to measure generalization to
out-of-distribution data. As discussed in [67], evaluation on
the ‘yes/no’ and ‘number’ categories of VQA-CP have un-
intuitive issues (for example, randomly guessing yes/no on
the former category achieves 72.9% while a method like [2]
only gets 65.5%; thus, a random, untrained model is usually
better than a trained one). For these reasons, our ablation
study uses only the ‘other’ type of questions.

Environments from ground truth question types. We
first present experiments for which we built training en-
vironments with the ground truth type of questions (pro-
vided with the dataset). Each training question has one la-
bel among 65. This label serves as a natural clustering of
the data. We assign the 65 clusters randomly to E envi-
ronments, splitting clusters as needed to obtain the same
number of training questions per environment. We trained
our method with a different number of environments (see
Fig. 3b). The point E=1 corresponds a standard training
of the model with the whole dataset. The plot shows a
clear improvement with multiple environments, with a peak
performance with E=15. Why does the accuracy decrease
with more environments ? We believe that the diversity and
amount of data in each environment then gets too low. We
experimented with other strategies (not reported in plots and
tables) to assign clusters to environments other than ran-
domly, by maximizing or minimizing the variation in the
answer distribution in each environment (compared to the
whole dataset). We found that the random assignment per-
formed best. It keeps the distribution of answers relatively
similar across environments, unless E is too large, which
further explains the slight decrease in accuracy then.

Environments by clustering questions. We now present
experiments where the environments are built through un-
supervised clustering of the questions. We do not use the
ground truth question types here. We rely on our prior
knowledge that a model should not be overly reliant on the
general form of a question. We represent the questions as

binary bag-of-words vectors (details in supp. mat.) and
cluster them with K-means. As above, we then assign the
clusters randomly to E environments (E < K). We plot
in Fig. 3 (right) the accuracy of the model against the num-
ber of clusters K. There is a distinct broad optimum. The
best accuracy is close but still inferior to the strategy that
uses the ground truth question types (compare the peaks in
Fig. 3 middle and right). We measured the similarity of the
unsupervised clustering with the ground truth type in terms
of Rand index, and noted that it was positively correlated
with the accuracy. This shows that using ground truth types
is the better strategy and the clustering approximates it.

Ablative analysis. We provide an ablation study in Ta-
ble 1. The performance substantially increases on the test
set with the proposed method compared to all baselines.
The variance regularizer is crucial to the success of the
method. We plot in Fig. 3 (left) the accuracy as a func-
tion of the regularizer weight (λ in Eq. 2). There is a clear
optimum, with higher values being generally better (the plot
uses a log scale). In Table 1, we also observe that the rela-
tive variance performs slightly better than the absolute vari-
ance. We also note that the alternating optimization scheme
performs slightly better. It works best after a a few epochs
of non-alternating “warm-up”, during which all parameters
are updated together. The use of the alternating optimiza-
tion is not crucial to the overall success of the method, and
it is not used in any other experiment.

Comparison to existing methods. We trained our
method on the whole VQA-CP dataset, including ‘yes/no’
and ‘number’ questions to compare it against existing meth-
ods (see Table 2). Our method surpasses all others on
‘other’, most of them by a large margin. The method of
Clark et al. [17] gets better results on the ‘yes/no’ and ‘num-
ber’ questions, but its results on the standard splits of VQA
v2 are also down to baseline levels (i.e. similar to a random
guess out of the subset of answers used in each category). In
comparison, our performance on the standard splits remains
higher. Note that some competing methods admittedly use
the test set as a validation set (!) for hyperparameter selec-
tion and/or model selection [2, 27]. We rather hold out 8k
instances from the training set to serve as a validation set as
recommended in [67]. They serve for example to monitor
training and determine the epoch for early stopping.

4.2. Invariance to equivalent questions (GQA)

Experimental setup. The GQA dataset [34] is a VQA
dataset built with images of the Visual Genome project [42]
and questions generated from the scene graphs of these im-
ages. The questions are generated from a large number
of templates and hand-coded rules, such that they are of
high linguistic quality and variety. We present experiments
using annotations of “equivalent questions” provided with
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Figure 3. Sensitivity to hyperparameters on VQA-CP, using envi-
ronments built from question groups (left and middle) or by clus-
tering questions (right). See discussion in Section 4.1.

VQA-CP v2
Val. set Test set
Other Other

Baseline 54.74 43.33
Environments: random; rel. var., no alt. opt. 53.34 43.51
Environments: clustered questions; rel. var., no alt. opt. 54.10 46.35
Environments: question groups; rel. var., no alt. opt. 53.87 47.60
+ Alternating optimization (0 warm-up epoch) 54.00 47.71
+ Alternating optimization (2 warm-up epochs) 53.90 47.82
+ Alternating optimization (4 warm-up epochs) 53.98 48.06
+ Alternating optimization (6 warm-up epochs) 53.86 47.38
Without variance regularizer 40.76 39.14
With absolute variance regularizer 51.44 46.17

Table 1. Ablative study on VQA-CP (accuracy in percent, training
on ‘Other’ questions only). Our method brings a significant gain
over the baseline, both with environments built using the ground
truth question types, and with environments built by unsupervised
clustering of the questions. As a sanity check, we run the method
with random environments, which gives results essentially iden-
tical to the baseline, as expected. The alternating optimization
scheme brings a additional small improvement, although it is not
crucial to the success of the method.

the dataset. These annotations are not used in any existing
model, to our knowledge. A small fraction of training ques-
tions (∼17.4% in the balanced training set) are annotated
with up to three alternative forms. They involve a different
word order or represent a different way of asking about a
same thing. For example:

– Is there a fence in the scene ?
Do you see a fence ?

– Which size is the green salad, small or large ?
Does the green salad look large or small ?

– Are there airplanes or cars ?
Are there any cars or airplanes in this photo ?

Some alternative forms are already part of the dataset as
other training questions, others are not. The straightforward
way to use these annotations is by data augmentation, i.e.
aggregating the equivalent forms with original training set.
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Figure 4. Experiments on GQA using equivalent questions to build
environments. Our method provides consistent gains over the
baseline, especially in the low-data regime. The improvement di-
minishes as more data is available, and is essentially impercepti-
ble when the model is training on the full 2M training examples
(∼10× than shown on this plot). A naive use of the equivalent
questions for data augmentation has a negative effect because it
shifts the distribution of the training set away from the test set.

Training environments with equivalent questions. We
use our method to help learning invariance to the linguistic
patterns of equivalent questions. We use E=4 environments
where we replace, in each, a question by its eth equivalent
form if available, or the original form otherwise. Each en-
vironment thus contains a single form of each question.

Results. We compare in Fig. 4 (left) the accuracy of our
method with same model trained on the standard train-
ing set, and with the data augmentation baseline described
above. The data augmentation does not help despite the
additional training examples, because it modifies the distri-
bution of training examples away from the distribution of
test questions. Our method, in comparison, brings a clear
improvement. For a fair comparison, we made sure that the
data augmentation uses the exact same questions (original
and equivalent forms) in every mini-batch, such that the im-
provement is strictly brought on by the architectural differ-
ences of our method. The improvement with our method is
greatest with low amounts of training data (we use random
subsets of the full training set). The full dataset provides a
massive 14M examples (about 1M in its balanced version),
at which point the impact of our method is imperceptible.
The training set then essentially covers the variety of lin-
guistic forms and concepts exhaustively enough such that
there is no benefit from the additional annotations.

It is worth noting that all improvements brought by our
method come from only a small fraction of questions be-
ing annotated with equivalent forms. It would therefore be
realistic to annotate a real VQA dataset with similar equiva-
lent forms, and investigate possible gains with our method,
which we hope to do in the future.

In Fig. 4 (right) we plot the accuracy as a function of the
regularizer weight. The clear optimum confirms again that
the regularizer is a crucial component of the method.
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VQA-CP v2, Test set VQA v2, Validation set
Overall Yes/no Numbers Other↓ Overall Yes/no Numbers Other

SAN [74] 24.96 38.35 11.14 21.74 52.02 – – –
GVQA [2] 31.30 57.99 13.68 22.14 48.24 – – –
Ramakrishnan et al., 2018 [55] 42.04 65.49 15.87 36.60 62.75 79.84 42.35 55.16
Grand and Belinkov, 2019 [27] 42.33 59.74 14.78 40.76 51.92 – – –
RUBi [13] 47.11 ±0.51 68.65 20.28 43.18 61.16 – – –
Teney et al., 2019 [68] 46.00 58.24 29.49 44.33 – – – –
Product of experts [17] 40.04 43.39 12.32 45.89 63.21 81.02 42.30 55.20
Clark et al., 2019 [17] 52.01 72.58 31.12 46.97 56.35 65.06 37.63 54.69

Our baseline model 37.87 ±0.24 41.62 10.87 44.02 61.09 ±0.26 80.23 42.25 53.97
Proposed method 42.39 ±1.32 47.72 14.43 47.24 61.08 ±0.12 78.32 42.16 52.81

Our baseline model (×4 ensemble) 39.30 40.72 11.18 46.44 64.26 82.07 44.56 56.33
Proposed method (×4 ensemble) 43.37 47.82 14.35 49.18 63.47 81.99 43.07 55.21

Table 2. Comparison with existing methods designed to improve generalization on VQA-CP (accuracy in percents). The evaluation on
‘yes/no’ and ‘number’ questions is highly unreliable (see Section 4.1 and [67]). On the ‘Other’ questions however, our method surpasses
all others. Our improvements on VQA-CP come only with a slight decrease in performance when trained and evaluated on the standard
splits of VQA v2 (right columns). Reassuringly, the benefits of our method are cumulative with those of an ensemble (obtained by averaging
the predictions of four models trained independently). The proposed method evaluated here uses environments built with question groups,
E=15 environments, the relative variance regularizer, and no alternating optimization.

4.3. Multi-dataset training (VQA v2 and VG QA)

Experimental setup. These experiments apply our
method to the training of a model on multiple datasets si-
multaneously. The VQA v2 dataset has previously been ag-
gregated with Visual Genome QA (VG) [42] as a simple
way to use more training data. The datasets contain similar
types of questions, but it is reasonable to assume that they
have slightly different distributions. We use E=2 environ-
ments, the first one containing the VQA v2 training data,
the second the VG data.

Results. In Table 3, we compare our method with a model
trained on VQA v2, another trained on VG, and one trained
on the aggregation of the two datasets. The improvement
is small but was verified over multiple training runs. We
also ruled out explanation of the improvement as merely
an ensembling effect, by comparing an ensemble of the
baseline with one of the proposed method. The bene-
fits of our method are cumulative with those of an en-
semble, which suggests that our method should also ap-
ply to higher-capacity models. A number of such models
have been described with a higher performance on VQA
v2 [15, 23, 24, 45, 46, 61, 75] and it will be interesting to
combine them with our method in the future.

5. Conclusions
We presented a method to train a deep models to bet-

ter capture the mechanism of a task of interest, rather than
blindly absorbing all statistical patterns from a training set.
The method is based on the identification of correlations
that are stable across multiple training environments, i.e.

VQA v2, Validation set VG
Overall Overall Yes/no Numbers Other Val.
Ens.×4 Single model

Baseline model
Trained on VQA v2 64.86 63.07 ±0.23 81.40 42.09 54.21 49.67
Trained on VG 28.48 27.58 ±0.22 0.11 36.03 47.11 60.17
Trained on Aggregated data 65.47 63.32 ±0.35 82.27 40.99 55.98 61.20

Proposed method
Without variance reg. 64.33 62.18 ±0.27 78.95 41.68 54.42 59.68
With variance reg. 65.73 63.80 ±0.17 81.00 42.35 55.97 60.54

Table 3. Multi-dataset training with VQA v2 and Visual Genome.
The standard practice is to aggregate the two datasets. Our method
treats them as two distinct training environments. The improve-
ment is very small, but it comes at zero extra cost, and it was veri-
fied over multiple runs (mean and standard deviation are reported),
as well as in an ensemble (first column). It was also verified on two
different implementations of the baseline model (not in table).

subsets of the training data. We described several strategies
to build these environments using different forms of prior
knowledge and auxiliary annotations. We showed benefits
in various conditions including out-of-distribution test data,
low-data training, and multi-dataset training.

An exciting challenge in computer vision is to design
models solving tasks rather than datasets. Our strong results
on VQA, which is known for its challenges in generalization
and data scarcity, give us confidence that suitable tools like
this method are emerging to make progress in this direction.

The proposed method is related to a series of works on
IRM that appeared concurrently with the preparation of this
paper [8, 3, 14, 16, 35]. Much remains to be done in terms
of theoretical and empirical comparisons of these methods
and their application to real (non-toy) data beyond VQA.
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