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Abstract

This paper addresses the task of set prediction using
deep learning. This is important because the output of many
computer vision tasks, including image tagging and object
detection, are naturally expressed as sets of entities rather
than vectors. As opposed to a vector, the size of a set is
not fixed in advance, and it is invariant to the ordering of
entities within it. We define a likelihood for a set distribu-
tion and learn its parameters using a deep neural network.
We also derive a loss for predicting a discrete distribution
corresponding to set cardinality. Set prediction is demon-
strated on the problems of multi-class image classification
and pedestrian detection. Our approach yields state-of-the-
art results in both cases on standard datasets.

1. Introduction

Deep neural networks have state-of-the-art performance
for many computer vision problems, including semantic
segmentation [25], visual tracking [24], image caption-
ing [16], scene classification [17], and object detection [20].
However, traditional convolutional architectures require a
problem to be formulated in a certain way: in particular,
they are designed to predict a vector (or a matrix, or a ten-
sor in a more general sense), that is either of a fixed length
or whose size depends on the input.

For example, consider the task of scene classification
where the goal is to predict the label (or category) of a given
image. Modern approaches typically address this by a series
of convolutional layers, followed by a number of fully con-
nected layers, which are finally mapped to predict a fixed-
sized vector [17, 30, 33]. The length of the predicted vec-
tor corresponds to the number of candidate categories, e.g.
1,000 for the ImageNet challenge [28]. Each element is a
score or probability of a particular category, and the final
prediction is a probability distribution over all categories.
This strategy is perfectly admissible if one expects to find
exactly one or at least the same number of categories across
all images. However, natural images typically show mul-
tiple entities (e.g. table, pizza, person, efc.), and what is
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Figure 1: Example pedestrian detection result of our ap-
proach. To select relevant detection candidates from an
overcomplete set of proposals (a), state-of-the-art methods
rely on non-maximum suppression (NMS) with a fixed set-
ting (b). We show that it is crucial to adjust the NMS thresh-
old adaptively, depending on the number of instances in
each image (3 in this case) (c).

perhaps more important, this number differs from image to
image. During evaluation, this property is not taken into ac-
count. The ImageNet Large Scale Visual Recognition Chal-
lenge ILSVRC) only counts an error if the “true” label is
not among the top-5 candidates. Another strategy to ac-
count for multiple classes is to fix the number to a certain
value for all test instances, and report precision and recall
by counting false positive and false negative predictions, as
was done in [11, 38]. Arguably, both methods are subop-
timal because in a real-world scenario, where the correct
labelling is unknown, the prediction should in fact not only
rank all labels according to their likelihood of being present,
but also to report how many objects (or labels) are actually
present in one particular image. Deciding how many objects
are actually present in an image is a crucial part of human
scene understanding that is missing from our current evalu-
ation of automated image understanding methods.

As a second example, let us turn to object detection, and
in particular pedestrian detection. The parallel to scene clas-
sification that we motivated above is that, once again, in
real scenarios, the number of people in a particular scene
is not known beforehand. The most common approach is
to assign a confidence score to a number of region candi-
dates [4, 8, 10, 27], which are typically selected heuristi-
cally by thresholding and non-maxima suppression. We ar-
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gue that it is important not to simply discard the information
about the actual number of objects at test time, but to exploit
it while selecting the subset of region proposals.

The examples above motivate and underline the impor-
tance of set prediction in certain applications. It is impor-
tant to note that, in contrast to vectors, a set is a collec-
tion of elements which is invariant under permutation. One
naive way of extracting a set from a distribution is to apply
thresholding. One single global threshold, however, cannot
produce the desired effect because it is highly dependent on
each data sample and should therefore be adjusted for each
instance. However, an adaptive threshold per training in-
stance cannot be learned in a straightforward manner as it is
not directly observable from the training data. Instead, we
use a principled definition of a set as the union of cardinal-
ity distribution and family of joint distributions over each
cardinality value.

In summary, our main contributions include:

e Starting from the mathematical definition of a set dis-
tribution, we derive a loss that enables us to employ
existing machine learning methodology to learn this
distribution from data.

e We integrate our loss into a deep learning framework
to exploit the power of a multi-layer architecture.

e We present state-of-the-art results on standard datasets
on the tasks of multi-label image classification and
pedestrian detection.

2. Related Work

A sudden success in multiple applications including
voice recognition [13], machine translation [32] and im-
age classification [17], has sparked the deployment of
deep learning methods throughout numerous research areas.
Deep convolutional (CNN) and recurrent (RNN) neural net-
works now outperform traditional approaches in tasks like
semantic segmentation [3], image captioning [16] or object
detection [20]. Here, we will briefly review some of the
recent approaches to image classification and object detec-
tions and point out their limitations.

Image or scene classification is a fundamental task of
understanding photographs. The goal here is to predict
a scene label for a given image. Early datasets, such as
Caltech-101 [7], mostly contained one single object and
could easily be described by one category. Consequently,
a large body of literature focused on single-class predic-
tion [17, 29, 40, 23]. However, real-world photographs typ-
ically contain a collection of multiple objects and should
therefore be captioned with multiple tags.

Surprisingly, there exists rather little work on multi-class
image classification that makes use of deep architectures.
Gong et al. [12] combine deep CNNs with a top-k approxi-
mate ranking loss to predict multiple labels. Wei et al. [39]

propose a Hypotheses-Pooling architecture that is specif-
ically designed to handle multi-label output. While both
methods open a promising direction, their underlying ar-
chitectures largely ignore the correlation between multiple
labels. To address this limitation, recently, Wang ef al. [38]
proposed a model that combines CNNs and RNNs (convo-
Iutional and recurrent networks) to predict a number classes
in a sequential manner. RNNSs, however, are not suitable
for set prediction mainly for two reasons. First, the out-
put represents a sequence and is thus highly dependent on
the prediction order, as was shown recently by Vinyals et
al. [34]. Second, the final prediction may not result in a fea-
sible solution (e.g. it may contain the same element multiple
times), such that post-processing or heuristics such as beam
search must be employed [35, 38]. Here we show that our
approach not only guarantees to always predict a valid set,
but also outperforms previous methods.

Pedestrian detection can also be viewed as a classifica-
tion problem. Traditional approaches follow the sliding-
window paradigm [36, 4, 37, 8, 1], where each possible
(or rather plausible) image region is scored independently
to contain or not to contain a person. More recent methods,
such as Fast R-CNN [ 10] or the single-shot multi-box detec-
tor (SSD) [20] learn the relevant image features rather than
manually engineering them, but retain the sliding window
approach.

All the above approaches require some form of post-
processing to suppress spurious detection responses that
originate from the same person. This is typically addressed
by non-maximum suppression (NMS), a greedy optimiza-
tion strategy with a fixed overlap threshold. Recently, sev-
eral alternatives have been proposed to replace the greedy
NMS procedure. Russel et al. [31] perform end-to-end head
detection by predicting the bounding boxes sequentially us-
ing an LSTM [14]. Their approach, however, processes
only a small image region at a time, thus limiting the appli-
cability on crowded scenarios with tens or hundreds of peo-
ple. Pham et al. [26] and Lee et al. [18] formulate NMS as
a global optimisation problem while Hosang et al. [ 15] pro-
pose to learn the NMS algorithm end-to-end using CNNs.
Both methods, however, do not consider the number of ob-
jects while selecting the final set of boxes. Contrary to ex-
isting pedestrian detection approaches, we incorporate the
cardinality into the NMS algorithm itself. This leads to
an improvement over the state of the art, validated on two
benchmarks.

3. Random Vectors vs. Random Finite Sets

To explain our approach, we first review some math-
ematical background and introduce the notation used
throughout the paper.

In statistics, a continuous random variable y is a vari-
able that can take an infinite number of possible values.



A continuous random vector can be defined by stacking
several continuous random variables into a vector, ¥ =
(y1, -+ ,Ym). The mathematical function describing the
possible values of a continuous random vector, and their
associated joint probabilities, is known as a probability den-
sity function (PDF) p(Y') such that [ p(Y)dY = 1.

A random finite set (RFS) ) is a finite-set valued ran-
dom variable Y = {y1, -+, Ym }. The main difference be-
tween an RFS and a random vector is that for the former, the
number of constituent variables is random and the variables
themselves are random and unordered.

A statistical function describing a finite-set variable )
is a combinatorial probability density function p()?), which
consists of a discrete probability distribution, the so-called
cardinality distribution, and a family of joint probability
densities on both the number and the value of the constituent
variables.

Similar to the definition of a PDF for a random variable,
the PDF of an RFS must sum to unity over all possible car-
dinality values and all possible element values and their per-
mutations, i.e.
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where f(()) is the probability of the empty set. The PDF of
an m-dimensional random vector can be defined in terms of
an RFS as:

L
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The factor m! = [];-, k appears because the probability
density for a set {y1,- - , ym } must be equally distributed
among all the m! possible permutations of the vector [21].

Conventional machine learning approaches, such as
Bayesian learning and convolutional neural networks, have
been proposed to learn the optimal parameters 6* of the dis-
tribution p(Y'|0*, x) which maps the input vector x to the
output vector Y. In this paper, we instead propose an ap-
proach that can learn a set of parameters (6*, w*) for a set
distribution that allow one to map the input vector x into the
output set Y, i.e. p(Y|0*,w*,x). The additional parame-
ters w define a PDF over the set cardinality, as we explain
in the next section.

4. Deep Set Network

Let us begin by defining a training set D = {);,x;},
where each training sample ¢ = 1, ..., n is a pair consisting
of an input feature x; € R! and an output (or label) set
Vi ={y1,¥2,-- -, ¥Ym}, ¥& € R% In the following we will
drop the instance index ¢ for better readability. Note that
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Figure 2: Left: Traditional CNNs learn a parameter set 8™
to predict a fixed vector Y. Right In contrast, we propose to
train a separate CNN to learn a parameter vector w, which
is used to predict the set cardinality of a particular output.

= || denotes the cardinality of set V. The probability
of a set Y is defined as:

p(VI0, w, x) =p(m|w, x)x
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where 6 denotes the parameters of y, that estimates the dis-
tribution of set element values for a fixed cardinality' , while
w represents the collection of parameters which estimate
the cardinality distribution of the set elements. For exam-
ple, if the outputs (or labels) in the set are independent and
identically distributed (i.i.d) and their cardinality follows a
Poisson distribution, we can write the likelihood as

p(Y|0, w,x) = /p(m|>\)p()\|x,w)d)\><

X (H p(yx|0, X)) :
k=1

4.1. Posterior distribution

“4)

To learn the parameters 8 and w, we first define the pos-
terior distribution over them as

p(6,w|D) o p(D|6, w)p(0)p(w)

x H {/ (m;| N)p(A|x;, w)dAx
i=1

m;! x (H p(ykl0,xi)>1 p(xi)p(0)p(w).
= 5)

IThis is also known as the spatial distribution of points in point process
statistics.




A closed form solution for the integral in Eq. (5) can be
obtained by using conjugate priors:

m ~ P(m;N)

A~ G alx,w), B(x,w))
alx,w),f(x,w) >0 Vx,w

6 ~ N(6;0,071)

w ~ N(w;0,021),

where P(-,)\), G(+;a, 3), and N(:;0,0°I) represent re-
spectively a Poisson distribution with parameters A\, a
Gamma distribution with parameters («, ) and a zero mean
normal distribution with covariance equal to o*1.

We assume that the cardinality follows a Poisson distri-
bution whose mean, A, follows a Gamma distribution, with
parameters which can be estimated from the input data x.
Consequently, the integrals in p(6, w|D) are simplified and
form a negative binomial distribution,

L(m+a)
I'(m+1)l(a)

where I' is the Gamma function. Finally, the full posterior
distribution can be written as

NB (m; a,b) = (I=0)"™,  (6)
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4.2. Learning
For simplicity, we use a point estimate for the poste-
rior p(6, w|D), i.e. p(6,w|D) = §(6 = 6", w = w*|D),
where (0%, w*) are computed using the following MAP es-
timator:

(67, w") = argmax  log (p (6, w|D)). (8)

The optimisation problem in Eq. (8) can be decomposed
w.r.t. the parameters 8 and w. Therefore, we can learn them
independently as

n  m;

0" = argmax 1[0+ > log (p(yxl6. %) )
=1 k=1

and

Y= - (m; + a(x;,w))
W' =arg max ; [log (F(mi + 1)F(04(Xi,w))>
B(x;, w)xxiw)
s ((1 + ﬁ(Xi,W)“(XmWHmi))} = 7zllwl],
(10)

where ~; and v are the regularisation parameters, propor-
tional to the predefined covariance parameters oy and os.
These parameters are also known as weight decay parame-
ters and commonly used in training neural networks.

The learned parameters 8 in Eq. (9) are used to map an
input feature vector x into an output vector Y. For example,
in image classification, 8™ is used to predict the distribution
Y over all categories, given the input image x. Note that
0™ can generally be learned using a number of existing ma-
chine learning techniques. In this paper we rely on deep
CNNs to perform this task.

To learn the highly complex function between the input
feature x and the parameters («, /3), which are used for esti-
mating the output cardinality distribution, we train a second
deep neural network. Using neural networks to predict a
discrete value may seem surprising, because these methods
at their core rely on the backpropagation algorithm, which
assumes a differentiable loss. Note that we achieve this by
describing the discrete distribution by continuous parame-
ters «, 8 (Negative binomial NB(, c, ﬁ)), and can then
easily draw discrete samples from that distribution. More
formally, to estimate w*, we compute the partial derivatives
of the objective function in Eq. (10) w.r.t. (-, -) and S(-, )
and use standard backpropagation to learn the parameters of
the deep neural network.

We refer the reader to the supplementary material for
the complete derivation of the partial derivatives, a more
detailed derivation of the posterior in Egs. (5)-(7) and the
proof for decomposition of the MAP estimation in Eq. (8).

4.3. Inference

Having the learned parameters of the network (w*, 68™),
for a test feature x*, we use a MAP estimate to generate a
set output as

y*zargmgx p(YV*|D,x"), (11)
where
p(VID,x") = / p(V*10, w, x*)p(8, w|D)dbdw

and p(6, w|D) = §(6 = 6", w = w*|D). To calculate the
mode of the set distribution p()*|D, x*), we first need to
calculate the mode m™ of the cardinality distribution

m* = argmax p(m|w*,x*), (12)
where p(m|w*,x*) = NB (m;a(w*,x*), m)

Then, we calculate the mode of the joint distribution for the
given cardinality m* as

y* = argrll'}lax p({yh 7ym*} 9*,X*) (13)



It can be seen from Eq. (2) that the mode of
Py, Ym~}0",x*) and p(y1, - -+ , Y~ |0", x*) needs
to be identical w.r.t. a fixed permutation. Since the output
of the first CNN with the parameters 6™ is already the mode
of p(y1,-- ,ynm|0",x*) and the samples are i.i.d., we use
the m* highest values from the output of the first CNN to
generate the final set output )*.

5. Experimental Results

To evaluate the performance of our proposed deep set
network, we perform experiments on two separate and
relevant applications: multi-label image classification and
pedestrian detection.

5.1. Multi-label Image Classification

In this section, we evaluate our approach on the task of
multi-label image classification. As opposed to the more
common and more studied problem of (single-label) im-
age classification, the task here is rather to label a photo-
graph with an arbitrary, a-priori unknown number of tags.
We perform experiments on two standard benchmarks, the
PASCAL VOC 2007 dataset [6] and the Microsoft Common
Objects in Context (MS COCO) dataset [19].

Implementation details. In this experiment, similar
to [38], we build on the 16-layers VGG network [30], pre-
trained on the 2012 ImageNet dataset. We adapt VGG for
our purpose by modifying the last fully connected predic-
tion layer to predict 20 classes for PASCAL VOC, and
80 classes for MS COCO. We then fine-tune the entire
network for each of these datasets using two commonly
used losses for multi-label classification, softmax and bi-
nary cross-entropy (BCE)> [11, 38]. To learn both classi-
fiers, we set the weight decay to 5 - 10~4, with a momentum
of 0.9 and a dropout rate of 0.5. The learning rate is ad-
justed to gradually decrease after each epoch, starting from
0.01 for softmax and from 0.001 for binary cross-entropy.
The learned parameters of these classifiers correspond to 6*
for our proposed deep set network (cf. Eq. (9) and Fig. 2).
To learn the cardinality distribution, we use the same
VGG-16 network as above and modify the final fully con-
nected layer to predict 2 values for o and . It is impor-
tant to note, that the predicted values must be positive to
describe a valid Gamma distribution. We therefore also ap-
pend two weighted sigmoid transfer functions with weights
ap, B to ensure that the values predicted for « and S are
in a valid range. Our model is not sensitive to these param-
eters and we set their values to be large enough (a3 = 160
and )y = 20) to guarantee that the mode of the distribu-
tion can accommodate the largest cardinality existing in the

2Weighted Approximate Ranking (WARP) objective is another com-
monly used loss for multi-label classification. However, it does not per-
form as well as softmax and binary cross-entropy for the used datasets [38].

dataset. We then fine-tune the network on cardinality distri-
bution using the objective loss defined in Eq. (10). To train
the cardinality CNN, we set a constant learning rate 0.001,
weight decay 510712, momentum rate 0.9 and dropout 0.5.

Evaluation protocol. To evaluate the performance of the
classifiers and our deep set network, we employ the com-
monly used evaluation metrics for multi-label image classi-
fication [ 1, 38]: precision and recall of the generated la-
bels per-class (C-P and C-R) and overall (O-P and O-R).
Precision is defined as the ratio of correctly predicted labels
and total predicted labels, while recall is the ratio of cor-
rectly predicted labels and ground-truth labels. In case no
predictions (or ground truth) labels exist, i.e. the denomina-
tor becomes zero, precision (or recall) is defined as %100.
To generate the predicted labels for a particular image , we
perform a forward pass of the CNN and choose top-k la-
bels according to their scores similar to [1 1, 38]. Since the
classifier always predicts a fixed-sized prediction for all cat-
egories, we sweep k from 0 to the maximum number of
classes to generate a precision/recall curve. However, for
our proposed DeepSet Network, the number of labels per
instance is predicted from the cardinality network. There-
fore, prediction/recall is not dependent on value k£ and one
single precision/recall value can be computed.

To calculate the per class and overall precision and recall,
their average values over all classes and all examples are
respectively computed. In addition, we also report the F1
score (the harmonic mean of precision and recall) averaged
over all classes (C-F1) and all instances and classes (O-F1).

PASCAL VOC 2007. The Pascal Visual Object Classes
(VOC) [6] benchmark is one of the most widely used
datasets for detection and classification. It consists of 9963
images with a 50/50 split for training and test, where ob-
jects from 20 pre-defined categories have been annotated by
bounding boxes. Each image may contain between 1 and 7
unique objects.

We compare our results with a state-of-the-art classifier
as described above. The resulting precision/recall plots are
shown in Fig. 3(a) together with our proposed approach us-
ing the estimated cardinality. Note that by enforcing the
correct cardinality for each image, we are able to clearly
outperform the baseline w.r.t. both measures. Note also
that our prediction (+) can nearly replicate the oracle (x),
where the ground truth cardinality is known. The mean ab-
solute cardinality error of our prediction on PASCAL VOC
is 0.32 + 0.52.

Microsoft COCO. Another popular benchmark for im-
age captioning, recognition, and segmentation is the recent
Microsoft Common Objects in Context (MS-COCO) [19].
The dataset consists of 123 thousand images, each labelled
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Figure 3: Experimental results on multi-label image classi-
fication on two datasets. The baselines (solid curves) repre-
sent state-of-the-art classifiers, fine-tuned for each dataset,
using two different loss functions. The methods are eval-
uated by choosing the top-k predictions across the entire
dataset, for different k. Our approach predicts & and is thus
evaluated only on one single point (+). It outperforms both
classifiers significantly in terms of precision and recall and
comes very close to the performance when the true cardi-
nality is known (x).

with per instance segmentation masks of 80 classes. The
number of unique objects for each image can vary between
0 and 18. Around 700 images in the training dataset do not
contain any of the 80 classes and there are only a handful
of images that have more than 10 tags. The majority of the
images contain between one and three labels. We use 82783
images as training and validation split (%90-10%), and the
remaining 40504 images as test data. We predict the cardi-
nality of objects in the scene with a mean absolute error of
0.74 and a standard deviation of 0.86.

Fig. 3(b) shows a significant improvement of precision
and recall and consequently the F1 score using our deep set
network compared to the softmax and binary cross-entropy
classifiers for all ranking values k. We also outperform
the state-of-the art multi-label classifier CNN-RNN [38],
for the reported value of & = 3 in Table 1. Our results
show around 10 percentage points improvement for the F1
score on top of the baseline classifiers and about 3 percent-
age points improvement compared to the state of the art on
this dataset. Examples of perfect label prediction using our
proposed approach are shown in Fig. 4. The deep set net-
work can properly recognise images with no labels at all, as
well as images with many tags. We also investigated fail-
ure cases where either the cardinality CNN or the classifier
fails to make a correct prediction. We showcase some of
these cases in Fig 5. We argue here that some of the fail-
ure cases are simply due to a missed ground truth annota-
tion, such as the left-most example, but some are actually
semantically correct w.r.t. the cardinality prediction, but are
penalized during evaluation because a particular object cat-
egory is not available in the dataset. This is best illustrated
in the second example in Fig. 5. Here, our network cor-

rectly predicts the number of objects in the scene, which
is two, however, the can does not belong to any of the 80
categories in the dataset and is thus not annotated. Similar
situations also appear in other images further to the right.

5.2. Pedestrian Detection

To demonstrate the generality of our approach, we test
it on an entirely different setting of pedestrian detection.
We perform experiments on two widely used datasets, Cal-
tech Pedestrians [5] and MOT16, the 2016 edition of the
MOTChallenge benchmark [22]. To push the state-of-the
art performance on pedestrian detection, we chose the lead-
ing detector on Caltech Pedestrians, which is the recent the
multi-scale deep CNN approach (MS-CNN) [2]. Note that
we do not retrain the detector, but are still able to improve
its performance by predicting the number of pedestrians in
each frame.

To learn the cardinality distribution, we use a gray-scale
image as the network input, constructed by superimposing
all region proposals and their scores generated by MS-CNN
detector (before non-maximum suppression approach). We
found, that this input provides a stronger signal than the raw
RGB images, yielding better results. We build on top of
the well-known AlexNet [17] architecture, and replace the
first convolutional layer with a single channel filter and last
fully connected layer with 2 layers output followed by two
weighted sigmoid activation function, similar to the case
above (cf. Sec. 5.1). The weights are initialised randomly
and the network is trained for 100 epochs using the objec-
tive loss proposed in Eq. (10). We set a constant learning
rate 1073, weight decay 5 - 10~%, momentum rate 0.9 and
dropout rate 0.5. The checkpoint with the lowest objective
on the validation set is chosen for prediction.

Non-maximum suppression. To generate the final detec-
tion outputs, most detectors often rely on non-maximum
suppression, which greedily picks the boxes with highest
scores and suppresses any boxes that overlap more than a
pre-defined threshold 7. In fact, choosing the right thresh-
old is crucial and can have a large impact on the overall
performance, as shown e.g. in [31]. However, there may
not exist a single value T, rather it highly depends on the
setting. We argue that it should therefore be adjusted for
each frame separately. To that end, we use the prediction on
the number of people (m) in the scene to choose an adap-
tive NMS threshold for each image. In particular, we start
from the default value of T, and adjust it step-wise until
the number of boxes reaches m. In the case if the number
of final boxes is larger than m, we pick m boxes with the
highest scores. For a fair comparison, we also find the best
(global) value for Ty for our baseline, the MS-CNN detec-
tor.



Table 1: Quantitative results for multi-label image classification on the MS COCO dataset.

Classifier /Metric C-P C-R C-F1| O-P O-R O-F1
Evaluation

Softmax k=3 58.6 5H7.6 58.1 | 60.7 63.3 62.0

BCE k=3 56.2 60.1 58.1 | 61.6 64.2 62.9

CNN-RNN [38] k=3 66.0 55.6 60.4 | 69.2 66.4 67.8

Ours (Softmax) Est. Card. || 68.2 599 63.8 | 68.8 67.4 68.1

Ours (BCE) Est. Card. || 66.5 629 64.6 | 70.1 68.7 69.4

GT: motorcycle chair, dining-table, book, tv, couch,

potted-plant, vase

cup, knife, fork, pizza, wine-glass

motorcycle chair, dining-table, book, tv, couch,

potted-plant, vase

person, chair, car, dining-table,
cup, knife, fork, pizza, wine-glass

Prediction:

Figure 4: Qualitative results of our multi-class image labelling approach. For each image, the ground truth tags and our
predictions are denoted below. Note that we show the exact output of our network, without any heuristics or post-processing.

Table 2: Mean absolute error and standard deviation for car-
dinality estimation on test sets.

Multi-label classification Pedestrian detection
Error | PASCAL VOC MS COCO | Caltech MOT16
Mean 0.32 0.74 0.54 1.94
Std 0.52 0.86 0.79 1.96

Evaluation metrics. To quantify the detection perfor-
mance, we adapt the same evaluation metrics and follow the
protocols used on the Caltech detection benchmark [5]. The
evaluation metrics used here are log-average miss rate (MR)
over false positive per image. Additionally, we compute
the F1 score (the harmonic mean of precision recall). The
F1 score is computed from all detections predicted from
our DeepSet network and is compared with the highest F1
score along the MS-CNN precision-recall curve. To calcu-
late MR, we concatenate all boxes resulted from our adap-
tive NMS approach and change the threshold over all scores
from our predicted sets.

Caltech Pedestrians [5] is a de-facto standard bench-
mark for pedestrian detection. The dataset contains se-
quences captured from a vehicle driving through regular
traffic in an urban environment and provides bounding box
annotations of nearly 350,000 pedestrians. The annota-
tions also includes detailed occlusion labels. The number
of pedestrians per image varies between 0 and 14. How-

ever, more than 55% of the images contain no people at all
and around 30% of the data includes one or two persons.
We use the MS-CNN [2] network model and its parameters
learned on the Caltech training set as §* in Eq. (9). To learn
the cardinality, we use 4250 images provided as a training
set, splitting it into training and validation (80% — 20%),
reaching a mean absolute error of 0.54 (¢f. Tab. 2). Quan-
titative detection results are shown in Tab. 3. We achieve
state-of-the art performance on this benchmark, improving
on the currently best detector by applying our DeepSet net-
work to estimate the number of persons in each image. The
improvement, however, is not as significant as in the case
of multi-class image classification. We believe that this is
mainly due to very limited variation of the number of pedes-
trians in the scene. For more than 85% of the images con-
taining 0 to 2 pedestrians. A single global threshold for
a state-of-the art detection output appears to work almost
as well as introducing the knowledge about the number of
persons in the scene. Another reason for the relatively low
improvement maybe the already remarkable performance of
modern detectors on this dataset (cf. [5]).

MOTCallenge 2016. Additionally, we evaluate the MS-
CNN detector and DeepSet in significantly more crowded
and more challenging sequences from MOT16 dataset [22].
This benchmark targeted at multi-object tracking and is not
yet commonly used for evaluating the pedestrian detection.
However the variation in the number of pedestrians across



GT: chair, cup, book, banana
keyboard, mouse

person, toothbrush

teddy-bear oven

chair, cup, book, banana, bottle

keyboard, mouse, tv
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person, toothbrush,
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Figure 5: Interesting failure cases of our method. The “spurious” TV class predicted on the left is an artifact in annotation
because in many examples, computer monitors are actually labelled as TV. In other cases, our network can correctly reason
about the number of objects or concepts in the scene, but is constrained by a fixed list of categories defined in the dataset.

Figure 6: Example results of pedestrian detection on selected frames of the MOT16 dataset (cropped for better visibility).
Note that we display all m boxes, and do not threshold on a certain confidence score. The rightmost image shows a failure
example, where a wrong cardinality prediction (6 in this case) forces the detector to output many false positives.

the frames is relatively large (between 0 and 32) and is also
distributed more uniformly, which makes correct cardinal-
ity estimation more important. Since the labels for the test
set are not available, we use the provided training set of
this benchmark consisting of 5316 images from 7 differ-
ent sequences, and divide it into training, validation and
test set with split ratios 60%, 15% and 25%, respectively.
We only learn the cardinality network w* on training set
and we use the MS-CNN network model and its parame-
ters learned on the KITTI dataset [9] as 6* in Eq. (9). The
results are summarised in Tab. 3 and shows a more signifi-
cant improvement over MS-CNN on this dataset compared
to Caltech. We believe that these results can be improved
further by formulating a more principled way of choosing
the m predicted targets in the scene, as opposed to relying
on the greedy NMS heuristic.

6. Conclusion

We proposed a deep learning approach for predicting
sets. To achieve this goal, we derived a loss for predicting
a discrete distribution over the set cardinality. This allowed
us to use standard backpropagation for training a deep net-
work for set prediction. We have demonstrated the effec-
tiveness of this approach on multi-class image classification

Table 3: Quantitative evaluation of our method on pedes-
trian detections measured by F1 score (higher is better) and
log-average miss rate (lower is better).

F1-score 1 log-avg miss |
Method / Dataset Caltech MOT16 \ Calt. MOT16
MS-CNN [2] 51.61 59.04 | 60.9 828
MS-CNN-DS (ours) 52.15 61.86 | 60.4  81.7
MS-CNN-DS (GT card.) | 52.28  62.42 | 60.3  81.5

and pedestrian detection, achieving state-of-the-art results
in both applications. As our network is trained indepen-
dently, it can be trivially applied to any existing classifier or
detector, to further improve performance.

In future, we plan to extend our model to multi-class car-
dinality estimation, extending its application to general ob-
ject detectors. Another potential avenue could be to exploit
the Bayesian nature of the model to include uncertainty as
opposed to only relying on the MAP estimation. Finally, we
have only considered set outputs. We believe a promising
direction for a follow up work is to extend our idea to also
handle set inputs, which can then be applied to problems
like graph matching.
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