Feature-Space Bayesian Adversarial Learning Improved Malware Detector
Robustness

Bao Gia Doan,' Shuigiao Yang,” Paul Montague,* Olivier De Vel,” Tamas Abraham,* Seyit
Camtepe,’ Salil S. Kanhere,” Ehsan Abbasnejad,' Damith C. Ranasinghe'
IThe University of Adelaide, Australia, 2The University of New South Wales, Australia,
3Data61, CSIRO, Australia, *Defence Science and Technology Group, Australia,
{giabao.doan, ehsan.abbasnejad, damith.ranasinghe } @adelaide.edu.au, {shuigiao.yang, salil.kanhere } @unsw.edu.au,
seyit.camtepe @data61.csiro.au, olivierdevel @yahoo.com.au, {paul.montague, tamas.abraham } @defence.gov.au

Abstract

We present a new algorithm to train a robust malware detector.
Malware is a prolific problem and malware detectors are a
front-line defense. Modern detectors rely on machine learning
algorithms. Now, the adversarial objective is to devise alter-
ations to the malware code to decrease the chance of being
detected whilst preserving the functionality and realism of
the malware. Adversarial learning is effective in improving
robustness but generating functional and realistic adversarial
malware samples is non-trivial. Because: i) in contrast to tasks
capable of using gradient-based feedback, adversarial learning
in a domain without a differentiable mapping function from
the problem space (malware code inputs) to the feature space
is hard; and ii) it is difficult to ensure the adversarial mal-
ware is realistic and functional. This presents a challenge for
developing scalable adversarial machine learning algorithms
for large datasets at a production or commercial scale to re-
alize robust malware detectors. We propose an alternative;
perform adversarial learning in the feature space in contrast
to the problem space. We prove the projection of perturbed,
yet valid malware, in the problem space into feature space
will always be a subset of adversarials generated in the feature
space. Hence, by generating a robust network against feature-
space adversarial examples, we inherently achieve robustness
against problem-space adversarial examples. We formulate a
Bayesian adversarial learning objective that captures the dis-
tribution of models for improved robustness. To explain the
robustness of the Bayesian adversarial learning algorithm, we
prove that our learning method bounds the difference between
the adversarial risk and empirical risk and improves robustness.
We show that Bayesian neural networks (BNNs) achieve state-
of-the-art results; especially in the False Positive Rate (FPR)
regime. Adversarially trained BNNs achieve state-of-the-art
robustness. Notably, adversarially trained BNNs are robust
against stronger attacks with larger attack budgets by a margin
of up to 15% on a recent production-scale malware dataset of
more than 20 million samples. Importantly, our efforts create
a benchmark for future defenses in the malware domain.

Introduction

We are amidst a meteoric rise in malware incidents world-
wide. Malware is responsible for significant damages, both
financial—in billions of dollars (Anderson et al.[2019)—and

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

human costs in loss of life (Eddy and Perlroth/[2020). Ac-
cording to statistics from Kaspersky Lab, at the end of 2020,
there were an average of 360,000 pieces of malware detected
per day (KasperskyLab|2020). The battle against such large
incidents of malware remains an ongoing challenge and the
need for automated and effective malware detection systems
is a research imperative.

Advances in Machine Learning (ML) have led to state-
of-the-art malware detectors (Arp et al.|[2014; Peng et al.
2012;|Harang and Rudd|2020; Raff et al.[2018;|Anderson and
Roth|[2018). But, ML-based models are known to be vulnera-
ble to adversarial examples; here, seemingly benign inputs
with small perturbations can successfully evade detectors.
Although adversarial examples were shown initially in the
computer vision domain (Szegedy et al.|[2013}; Goodfellow!
Shlens, and Szegedy|[2015; Madry et al.|2018]; Biggio and
Roli|2018)), malware is no exception. Recent attacks have
crafted adversarial examples in the malware domain—so-
called adversarial malware; now, a carefully crafted malware
sample with minimal changes to malware code but still able to
preserve the realism and functionality of the malware is able
to fool ML-based malware detectors to misclassify them as
benign-ware. These attacks pose an emerging threat against
ML-based malware detectors (Grosse et al.[2017; [Kolosnjaji
et al.[2018}; |Kreuk et al.[2018}; |Suciu, Coull, and Johns|[2019;
Pierazzi et al.|2020; [Demetrio et al.|[2021)).

Problem. In general, adversarial learning (Athalye, Carlini/
and Wagner|2018)) or training with adversarial examples is an
effective method to build models robust against adversarial
examples. However, generating adversarial malware samples
for training, especially at the production scale necessary for
deployable models, is non-trivial. Because:

* Generation of adversarial examples in the malware do-
main is confronted with the inverse feature-mapping prob-
lem where the function mapping from the problem space
(the discrete space of software code binaries) to the fea-
ture space (vectorized features) is non-differentiable (Big{
ci0 et al.| 2013} Biggio, Fumera, and Roli|[2013} [Quir
ing, Maier, and Rieck|2019). Hence, fast, gradient-driven
methods to derive useful information to craft adversarial
samples in the problem space are not suitable.

¢ The need to enforce malware domain constraints, realism,
functionality, and maliciousness on generated perturba-



tions in the problem space is a difficult proposition. Thus,
arbitrary changes to the malware binaries are not possible
because it could drastically alter the malware in a manner
to break the malicious functionality of the binaries or even
make it unloadable.

Although efforts to realize robust models on discrete
spaces such as discrete image or graph data exist (Lee et al.
2019 Wang et al.[2021)), the problem space of malware classi-
fication is significantly more challenging due to the imposed
constraints in the problem space; the realism and functionality
as well as maliciousness of the malware must be maintained.
Unfortunately, a method to scale up adversarial training with
samples in the problem space to production scale datasets,
especially in the case of neural networks, does not exist.

Further, despite extensive work on adversarial ML in gen-
eral, very few studies have focused on the problem in the
context of malware as recently highlighted by |Pierazzi et al.
(2020), and a comprehensive investigation of robust defense
methods in the area remains to be conducted.

Research Questions. Hence, in this study, we seek to answer
the following research questions (RQs):

* RQ1I. How can we overcome the challenging problem of
adversarial learning for malware at a production scale
to realize robust malware detectors against adversarial
malware samples?

* RQ2. How can we formulate an adversarial learning prob-
lem for building robust malware detectors and how can
we explain the robustness and benefits?

* RQ3. How robust are adversarially trained malware detec-
tors, especially against problem-space (functional, realis-
tic and malicious) adversarial malware samples?

Our Approach. We argue that a defender is not confronted
with the problems we mentioned. Because, we show that
constraining the adversarial examples in the problem space
to preserve malware realism, functionality and malicious-
ness can be turned to an advantage for defenders. The con-
straints make the perturbed malware in the problem space
a subset of the adversarial examples in the feature space.
Therefore, designing a robust method against feature-space
adversarial examples will inherently be robust against con-
strained problem-space adversarial examples encapsulating
the threats from adversarial malware.

To construct a formulation to improve the robustness
against feature-space adversarial malware examples, and ulti-
mately problem space malware, we propose a Bayesian for-
mulation for adversarially training a neural network: i) with
the capability to capture the distribution of models to im-
prove robustness (Liu and Wang|2016; [Liu et al.[[2019} Ye
and Zhul[2018}; Wicker et al.|2021}; |Carbone et al.|[2020; Doan
et al.|2022); and ii) prove our proposed method of diversified
Bayesian neural networks hardened with adversarial train-
ing bounds the difference between the adversarial risk and
the conventional empirical risk to theoretically explain the
improved robustness.

Moreover, just recently, security researchers with domain
expertise placed significant effort into providing featuresﬂ

'Notably, a negligible computation time of 160 ms, on average, is

for malware samples at a production scale of more than 20
million samples (Harang and Rudd|2020; [Anderson and Roth
2018)-the SOREL-20M dataset. However, the robustness
of networks built on these extracted features in the face of
evasion attacks are yet to be understood. Therefore, our study
to investigate production scale adversarial learning is timely
and we focus our efforts to investigate methods using the
SOREL-20M dataset.

Our Contributions. To address the problem of building ro-
bust malware detectors, we make the following contributions:

1. We prove the projection of perturbed yet, valid malware,
in the problem space (the discrete space of software
code binaries) into the feature space will be a subset of
feature-space adversarial examples. Thus, a robust net-
work against feature-space attacks is inherently robust
against problem-space attacks. Our work provides a theo-
retically justified basis for adversarially training malware
detectors in the feature space. Further, to corroborate our
proof, we empirically demonstrate networks trained on
feature-space adversarials are robust against functional
and realistic problem-space adversarial malware (RQI).

2. Hence, to improve robustness in the problem space we
propose performing adversarial learning in the feature
space and formulate a Bayesian Neural Network (BNN)
adversarial learning objective that captures the distribu-
tion of models for improved robustness. The algorithm is
capable of learning from production scale feature-space
datasets of up to 20 million samples (RQ1 and RQ?2).

3. We also prove hardening BNNs with adversarial examples
bounds the difference between the adversarial risk and the
empirical risk to explain the improved robustness (RQ?2).

4. We empirically demonstrate Bayesian Neural Networks
capturing model diversity to improve the performance of
malware classifiers and adversarially trained BNNs to gen-
erate more robust models against the threat of adversarial
malware. Adversarially trained BNNs achieve new bench-
marks for state-of-the-art robustness—especially against
unseen, stronger, attack samples (RQ3).

Scope. Notably, in our study, we focus on Windows Portable
Executable (PE) malware for two reasons: i) Windows is
the most popular operating system for end-users worldwide,
and PE-file malware is the earliest and most studied threat
in the wild (Schultz et al.|2001), making a robust method to
detect adversarial PE files a significant contribution to secu-
rity research; and ii) the intuition and methodology behind
Windows PE malware can be applied and transferred to other
file formats and operating systems, such as PDF malware or
malware for Linux and Android systems (see the Appendix).

Background and Related Work

Machine Learning Methods in the Malware Domain. Mal-
ware detection is moving away from hand-crafted ap-
proaches relying on rules toward machine learning (ML)
techniques (Schultz et al.|2001}; |Saxe and Berlin|2015}; Raff]
et al.|[2018; Krcal et al.|2018)). Recently, MalConv (Raff et al.

required to derive vectorized features as described in the Appendix.



2018)) adopted a Convolutional Neural Network (CNN) based
architecture design with a learnable, but non-differentiable,
embedding space for malware detection from raw byte se-
quences. The adoption of a CNN for malware detection was
also proposed in (Krc¢dl et al.2018). However, training mal-
ware detectors on raw byte sequences (arbitrary number, often
millions, of bytes) is computationally expensive and time-
consuming. In addition, as we discussed earlier, it is non-
trivial to craft realistic adversarial examples on raw byte
sequences to realize a robust network on large-scale datasets.
Consequently, recent work has employed problem space to
feature space mapping functions together with feed-forward
neural networks to build benchmark models for the large-
scale SOREL-20M dataset (Harang and Rudd|2020).

LUNA (Backes and Nauman|2017) proposed a simple lin-
ear Bayesian model for an Android malware detector, which
preserves the concept of uncertainty, and shows that it helps
to reduce incorrect decisions as well as improve the accuracy
of classification. The benefit of a Bayesian classifier is to
handle ML tasks from a stochastic perspective, where all
weight values of the network are probability distributions.
More recently, [Nguyen et al.[(2021) investigated the appli-
cation of uncertainty and Bayesian treatment to improve the
performance of malware detectors on neural networks.

Adversarial Malware (Adversarial Examples in the Mal-
ware Domain). ML-based classifiers are shown to suffer
from evasion attacks, via adversarial examples (Goodfellow.
Shlens, and Szegedy|2015)). Recently, adversarial examples
were demonstrated in the problem space (Grosse et al.|2016;
Xu, Q1, and Evans|2016} Grosse et al.[2017;|Hu and Tan[2017;
Kolosnjaji et al.|2018}; [Kreuk et al.[2018; Suciu, Coull, and
Johns|[2019)). In particular, [Kolosnjaji et al.| (2018)) proposed
a method to append bytes to the end of the binary PE file,
while Kreuk et al.| (2018)) exploited the regions within the
executable which are not mapped to memory to construct
adversarial malware. These methods intend to make modifi-
cations that do not affect the intended behavior of the exe-
cutable. Suciu et al. (Suciu, Coull, and Johns|2019) adopted
FGSM (Goodfellow, Shlens, and Szegedy|2015)) to show the
generalization properties and effectiveness of adversarial ex-
amples against a CNN-based malware detector, MalConv,
trained with small-scale datasets. Suciu, Coull, and Johns
(2019) highlighted the threat from adversarial examples as
an alternative to evasion techniques such as runtime packing,
but showed that models trained on small-scale datasets did
not generalize to robust models; hence, emphasizing the im-
portance of training networks on production-scale datasets.

Improving Model Robustness. Among methods for im-
proving the robustness of models (Madry et al.|[ 2018} |(Chen
et al.[2020; [Fischer et al.[2019)), adversarial training (Madry
et al[[2018) and its variants are shown to be one of the
most effective and popular methods to defend against ad-
versarial examples (Athalye, Carlini, and Wagner|2018). The
goal of adversarial training is to incorporate the adversarial
search within the training process and, thus, realize robust-
ness against adversarial examples at test time. In particular,
recently, Bayesian adversarial learning has been investigated
and adopted in the computer vision domain to propose to

improve the robustness of models against adversarial exam-
ples (Liu and Wang|2016; |Ye and Zhu|2018; |Liu et al.[2019;
Wicker et al.[2021} |Carbone et al.|2020; |Doan et al.|2022).

Adversarial learning was explored in the malware domain
in (Al-Dujaili et al.|2018)) to generate a robust detector for
binary encoded malware. However, the computational cost to
realize realistic, adversarial raw byte representations is pro-
hibitively expensive (Suciu, Coull, and Johns|2019; [Pierazzi
et al.|2020) for adversarial learning.

Summary. We recognize that: i) a method capable of scal-
ing up the adversarial training of neural networks in the
problem space to production scale datasets does not exist;
ii) a Bayesian adversarial learning objective that captures
the distribution of models could provide improved robust-
ness; however iii) such a formulation requires overcoming the
challenging problem of generating problem-space adversarial
examples at production scales.

In what follows, we begin with a problem definition, a theo-
retical basis for employing feature-space adversarial learning
as an alternative to problem-space, followed by the formu-
lation of a Bayesian adversarial learning objective and ex-
perimental results validating our claims and demonstrating
state-of-the-art performance and robustness.

Problem Definition

Threat model. We assume an attacker with perfect knowl-
edge (white-box attacker) (Biggio, Fumera, and Rolil[2013),
in which the attacker knows all parameters including feature
set, learning algorithm, loss function, model parameters/hy-
perparameters, and training data. The reason for considering
the strongest, perfect-knowledge adversary is because, even
if access to the model is not possible, or the model is not pub-
licly available, an adversary can employ a reverse engineering
approach such as (Tramer et al.|[2016; [Rolnick and Kording
2020; (Carlini, Jagielski, and Mironov|2020) to extract the
model. And, defending against such attacks is challenging.
The attacker’s objective is to evade detection. Their capability
is to modify the features at test time.

Problem-Space Attacks. We consider the problem space
Z which refers to the input space of real objects of a consid-
ered domain such as software code binaries. First Z must be
transformed into a compatible format such as numerical vec-
tor data (Anderson and Roth|2018; [Harang and Rudd|2020)
for ML to process. Then, a feature mapping is a function
® : Z — X C R"™ that maps a given problem-space software
code binary z € Z to an n-dimensional feature vector x € X'
in the feature space such that ®(z) = x.

Normally, attackers have to apply a transformation on z
to generate z’ such that ®(z’) is very close to x’ in the fea-
ture space. Formally, given a problem-space object z € Z
with label y € ), the goal of the adversary is to find the
transformation T : Z — Z (e.g. addition, removal, modi-
fication) such that z' = T'(z) is classified as a class t # y.
In the malware domain, the adversary has to search in the
problem space that approximately follows the gradient in
the feature space. However, this is a major challenge that
complicates the application of gradient-driven methods to the
problem-space attacks— so-called inverse feature-mapping



problem (Quiring, Maier, and Rieck|2019; Biggio et al.2013;
Pierazzi et al.|2020) where the function ® in the software
domain—our focus—is typically not invertible and not differ-
entiable, i.e. there is no one-to-one mapping from the adver-
sarial examples in the feature space x+4 to the corresponding
adversarial problem-space object z’. In addition, the gener-
ated object T'(z) must be realistic and valid (Suciu, Coull,
and Johns|[2019). Thus, the search for adversarial examples
in the problem space (software) cannot be a purely gradient-
based method, hindering the adoption of well-known adver-
sarial attacks in other domains such as computer vision. To
achieve a realistic adversarial objective, the search for adver-
sarial examples in the problem space has to be constrained in
problem-space constraints denoted by {2. We remark that
the constraints on the problem space are well defined and
can be found in (Biggio and Roli2018}; |Quiring, Maier, and
Rieck|2019; |Xu, Q1, and Evans|[2016; [Pierazzi et al.|2020),
we mentioned here, for completeness, that there are at least
four main types of problem-space constraints including Pre-
served semantics, Plausibility, Robustness to Processing and
Auvailable Transformation explained in detail by Pierazzi et al.
(2020).

Feature-Space Attacks. To alleviate the problems with prob-
lem space attacks, we propose an alternative that uses feature
space. We note that all definitions of feature-space attacks
are well defined and consolidated in related work (Biggio
and Roli[2018}; |Carlini and Wagner|2017} |Grosse et al.[2017).
In this paper, we use a popular feature mapping function pro-
vided in the EMBER dataset (Anderson and Roth|2018)) to
map raw bytes of software to a vector of n = 2381 features.
A feature-space attack is then to modify a feature-space
object x € X to become another object X' = x+ § where § is
the added perturbation crafted with an attack objective func-
tion to miclassify x” into another class ¢ # y where y € )
is the ground-truth label of x. We note that in the malware
domain (a binary classification task), the intuition of the at-
tackers is to make the malware be recognized as benign ware.
These modifications has to follow feature-space constraints.
We denote the constraints on feature-space modifications by
T. Given a sample x € X, the feature-space modification,
or perturbation § must satisfy Y. This constraint Y reflects
the realistic requirements of problem-space objects. In the
malware domain, feature perturbations & can be constrained
O < 6 < 0, (Pierazzi et al[2020).

Theoretical Basis For Feature-Space
Adpversarial Learning

We highlight that the realistic assumption of problem-space
attacks makes the constraints imposed by (2 stricter or equal
to those imposed by Y (illustrated in Figure[)). Following the
necessary condition for problem-space adversarial examples
as stated in|Pierazzi et al.| (2020)), we have:

Lemma 1. If there exists an adversarial example in the prob-
lem space (z’) that satisfies the constraints €, then there will
be a corresponding adversarial example in the feature space
(x') under the constraints Y. More formally, by abusing no-
tation from model theory to use |= to indicate an instance
“satisfies” constraints, and write z’ = Q and X' = T, we

Figure 1: Illustrative example of adversarial examples. The
adversarial example X + d is derived from x in the feature
space and its projection to problem-space constraints (which
is more restrictive) determined by € is z'. The color in the
background illustrates the decision regions where red color
is for malware and green is for benign programs. The solid
arrow in Feature Space represents the gradient-based attack
to transform a malware x to X + 6, projected to the problem-
space constraints as z’ to be misdetected as a benign program.

have:

7 EQ, p(y| (), 0) =ply| 2(T(2)),0),
py | ®(T(2)),0) <05
=X =x+6:XET, ply|x,0) <05

where T is the transformation in the problem space to craft
adversarial examples, p(y | x,0) = sigmoid(f(x; 8)) is the
output of a sigmoid function applied to the output of the
neural networks f parameterized by 0, p(y | x,0) = 0.5
is the threshold for malware detection where the predicting
p(y | x,0) = 0isrecognized as benign whilst p(y | x,0) = 1
indicates a malware, 2, Y are, respectively, the problem-
space and feature-space constraints, and ®(+) is the function
that maps the problem space to feature space.

The proof of Lemma 1 is in Appendix . From Lemma 1, if
there exists an attack in the problem space, then there exists a
corresponding attack in the feature space. By contraposition,
if there does not exist an attack in the feature space, there
does not exist an attack in the problem space. However, we
know that the opposite is not true: if there does not exist an
attack in the problem space (e.g. due to functionality), there
still exists an attack in the feature space. Thus, we can derive:

Corollary 1. The adversarial examples generated from con-
strained problem-space adversarial examples (imposed by
) are in a subset of feature-space adversarial examples (im-
posed by Y).

Corollary 2. Detectors robust against feature-space adversar-
ial examples (imposed by T) are robust against constrained
problem-space adversarial examples (imposed by (2).

Built upon these Corollaries, we propose to find a learning
method robust against feature-space adversarial malware.
On the one hand, adversarial training (Madry et al.|[2018)
and its variants are shown to be one of the most effective
and popular methods to defend against adversarial exam-
ples (Athalye, Carlini, and Wagner|2018)). On the other hand,



Bayesian neural networks (MacKay||1992; [Ritter, Botev, and
Barber|2018; [zmailov et al.|[202 1)) with distributions placed
over their weights and biases enabling the principled quantifi-
cation of the uncertainty of their predictions are shown to be
a robust method against adversarial examples. Thus, in this
paper, demonstrating that robustness against feature-space
adversarial examples is inherently robust against problem-
space real malware. We propose to incorporate adversarial
training with Bayesian neural networks to seek the first prin-
cipled method of Bayesian adversarial learning to realize a
robust malware detector without the difficulties of inverse
feature-mapping and preserving semantics and functional-
ities of real malware samples. We name our method Adv-
MalBayes, and the method is efficient enough to be scaled
up to a large production scale of adversarial training data of
20 million adversarial samples with the pre-extracted feature
set of SOREL-20M dataset (Harang and Rudd|[2020).

Bayesian Formulation for Adversarial Learning

The goal of Bayesian adversarial learning is to find the poste-
rior distribution using Bayes theorem:

P01 D)= [  »y|xa.0)p(0)/2

(xudv ) y) ~Dagy

where Z is the normalizer, D,q, is the adversarial dataset
obtained by generating adversarial examples from the benign
dataset D using adversarial generation such as Eq. (I).

We consider p(y | Xay,0) = sigmoid(f(Xaay;8)) to
produce a binary prediction in malware detection. Notably,
Eq. (I) is the Expectation-over-Transformation (EoT) PGD
attack (Athalye et al.|[2018; |Zimmermann|2019), which is
slightly different from the usual PGD attack (Madry et al.
2018)). As has been highlighted in Zimmermann| (2019)), the
EoT attack is better able to estimate the gradient of the
stochastic Bayesian models:

Xt =TI, .. {xt + « - sign (Eg [Vxﬁ (f (xt; 9) R yo)})} (D

where €max 1S the maximum attack budget, II._ . is the
projection to the set {X | [|[x — X, ||, < €max}, £ is the loss
function (typically cross-entropy), f is the neural network, x
is the input, 0 is the network parameter, and y is the ground-
truth label. In this attack, an attacker starts from x° = x,, and
conducts projected gradient descent iteratively to update the
adversarial example.

However, as highlighted in [Izmailov et al.|(2021), the pos-
terior over a Bayesian neural network is extremely high-
dimensional, non-convex and intractable. Thus, we need to
resort to approximations to find the posterior distribution.
In this work, we propose using Stein Variational Gradient
Descent (SVGD) (Liu and Wang|2016)) for two reasons. First,
this approach learns multiple network parameter particles
in parallel for faster convergence. Second, there is a repul-
sive factor in the method to encourage the diversity of pa-
rameter particles that helps to prevent mode collapse — a
challenge of posterior approximation. To further demonstrate
the robustness of our chosen Bayesian method, we compare
Adv-MalBayes with previous BNNs (Liu et al.|2019) in the
Appendix Table

We consider n samples from the posterior (i.e. parameter
particles). The variational bound is minimized when gradient
descent is modified as:

0, =0, — qug*(ai)

with () = [k(0;,0)Ve, £(f(Xaav: 0;),7)

j=1
gl

— 1V, k(6;,6)] .

L V0,k(6.0)]

Here, 0; is the ith particle, k(-, ) is a kernel function that
measures the similarity between particles and + is a hyper-
parameter. The parameter particles are encouraged to be dis-
similar to capture more diverse samples from the posterior
thanks to the kernel function. This is controlled by a hyper-
parameter v to manage the trade-off between diversity and
loss minimization. Following (Liu and Wang|2016)), we use

the RBF kernel k(0,8') = exp (7\\9 —o? /2h2) and take the

bandwidth h to be the median of the pairwise distances of
the set of parameter particles at each training iteration.

At the inference stage, given the test data point x*, we can
get the prediction by approximating the posterior using the
Monte Carlo samples as:

Py %", Duay) = / Py | x*,0)p(6 | Disv)d0

1 & .
~ E Zp(y | xaoi)7 0; Np(e ‘ Dﬂdv)a
=1

where 0; is an individual parameter particle. Notably, we
acknowledge that it is critical to have diverse parameter par-
ticles. Averaging over diverse and uncorrelated predictors
was shown to improve network performance (Jacobs et al.
1991} Wolpert 1992} |Breiman||1996). In the adversarial set-
ting, when integrating out the parameters in our Bayesian
formulation, we implicitly remove the vulnerabilities aris-
ing from a single choice of parameter existing in traditional
neural networks, and hence improve the robustness.

Adpversarial Risk is Bounded with the Bayesian
Formulation

In this section, to explain the robustness of the Bayesian
adversarial learning method that we propose, we prove that
training the network with the Bayesian adversarial learning
method bounds the difference between the adversarial risk
and the empirical risk. This is important, because, now the
risk of misclassification on adversarial examples is as the
same as that of benign ones; hence eliminating the vulnera-
bility of adversarial examples and reduce the risk of misclas-
sification of adversarial examples to the generalization ability
of the classifier. Notably, improving the generalization ability
of the classifier is not our focus.

In this context, we make no specific assumption on the
distribution of either the adversarial examples or the per-
turbations, to provide a generic defense approach. The
only assumption we make is that the distribution of the
data and the corresponding adversarial examples are suf-
ficiently close. This is a mild and reasonable assump-
tion because the idea of adversarial learning is that the



added perturbation does not change the perceived sam-
ples or the distribution of the samples. Thus, we consider
the bound of |R,s, — R| where the empirical risk R =
Eo [E(xy)~D [Ey~pyix.0) [I(y = y')]]] and the adversarial
risk Radv = Ee I:]E(xadwy)""Dadv I:]Ey/"’p(y‘xadwe) [H(y = y,)”]

Proposition 1. The difference between the adversarial risk
(denoted by R,,) and the empirical risk (denoted by R) of a

classifier when trained on the observed training set and its
adversarial counterparts is bounded, i.e.

|Rad\' - R| S T,
where T = 1—E¢,)~p [exp (Ee [rg(x,xadv,y)]):| )
K
ro (¥, Xan,y) = > ply=c|x,0)log(p(y=c|xu,0)).

c
Here, x4, denotes the adversarial example obtained from x.

We can see that the difference between the empirical risk
and the adversarial risk is minimized when the upper bound
is minimized. Notably, as we know that 1 — exp(—=z) is a
monotonically increasing function, and 1 — exp(—z) < z, to
avoid computational instabilities and gradient saturation, we
consider minimizing the upper bound without the exponen-
tial function. Thus, to minimize the upper bound, our main
learning objective (in Algorithm[I]in the Appendix) is to:

Minimize cross entropy for the adversarial examples. This
corresponds to matching the prediction from the adversarial
data to that of the observations. Since (X, y) is given in the
training, we simply minimize the entropy of the adversarials.

Sketch of the Proof. We simplify the difference between the
risks by considering that the difference between individual
mistakes is smaller than their product, i.e.

By ~p(yix0) [Eysp(ylxa.0) 1y # v1] — Iy # va]]]

< ]Ey’~p(y\xadv,9) [Ey’Np(ylxmdv,G) [My: # y2m
K
<1-) ply=rc|x0)p(y =c|Xu,0).

c=1

We then use Jensen’s inequality when using exp(log(-)) to
obtain the upper bound. The complete proof is provided in
Appendix . We empirically evaluate this difference of risk
and illustrate the results in Figure[]in the Appendix.

Experiments and Results

Classifiers. To validate our proposed method Adv-MalBayes,
we conduct experiments on different neural networks. We
employ the Feed Forward Neural Network (FFNN) classi-
fier provided in the SOREL-20M dataset (Harang and Rudd
2020). This network architecture is also used for the exper-
iments on the EMBER dataset (Anderson and Roth|2018)).
Our network implementation uses the default configuration
provided in (Harang and Rudd|[2020). We also adopt the
architecture of FFNN to design the Bayesian Neural Net-
work (BNN). The details of the network architecture are in
Appendix. Then, we harden the FFNN and BNN with ad-
versarial examples to generate the Adv-FFNN model and

Adv-MalBayes. In addition, we also employ baseline net-
works including LightGBM (Anderson and Roth|2018]) and
MalConv (Raff et al.|2018) for comparison. We compare
their performance on malware datasets (no attacks) and its
adversarial counterparts (adversarial malware designed to
evade detectors) to evaluate the detector performance and
robustness. The values of the attack budgets used for training
and testing are detailed in Table 4]in the Appendix.

Datasets. In this paper, we use the two largest publicly avail-
able corpora for malware detection, namely:

e The production scale dataset Sophos Al SOREL-
20M (Harang and Rudd|2020) containing 20 million pre-
extracted samples.

» EMBER (Anderson and Roth|2018) dataset designed to
be more challenging for ML-based classifiers.

We detail these datasets in Appendix .

ROC

1.00
0.95 -
0.90 A
3 0.85 -
€ 0.80 1
3
2 0.75
k]
2 0.701
[
2 0.65 -
0.60 -
0.55 -

— BNN
— FFNN

== Adv. MalBayes
0.501 = Adv. FFNN
0.45

1075 104 1073
False positive rate

Figure 2: Performance of neural network classifiers in the
absence of adversarial examples in the SOREL-20M dataset.
The ROC:s depict the detection ability of the models as their
discrimination threshold is varied. We can observe BNN
models to outperform their FFNN counterparts.

Results. We present our results by reporting: i) performance
of the given classifiers on malware detection tasks (no attacks
setting) using ROC (receiver operating characteristic curve);
and ii) robustness (under evasion attacks with adversarial
malware). We detail these metrics in the Appendix.

Performance (no attacks). Performance of the classifiers in
the absence of attacks are shown in Figure 2] with additional
details reported in Table[7)in the Appendix. The ROC curves
in Figure 2] report the True Positive Rate (i.e. the percentage
of correctly-classified malware samples) as a function of the
False Positive Rate (FPR, i.e. the percentage of misclassified
benign samples) for each classifier. From the figure, we can
see that Bayesian neural networks of the same network ar-
chitecture as FFNNs achieve better performance (compare
BNN vs. FFNN and Adv-MalBayes vs. Adv-FFNN). No-
tably, the BNNs outperformed the FFNN counterparts with a
large margin in the detection rate (of up to 20%) under low-
FPR regimes. Notably, in Table[/]in the Appendix, we also
show that BNNs built on feature-space samples achieve better
performance compared with the popular ML-based malware
detector built on problem-space samples (MalConv) (Raff]



et al.|[2018) and its recently updated version in AAAI-21
(MalConv w/ GCQG) (Raff et al.[2021)).

Robustness (against Feature-Space Adversarial Exam-
ples). To evaluate the robustness of the investigated classi-
fiers, we apply the PGD attack from Equation (1)) on malware
samples with increasing attack budgets. Results for the ro-
bustness of given classifiers under different attack budgets
are reported in Table[I] Notably, Adv-MalBayes outperforms
the adversarially trained FFNN on both the production scale
(SOREL-20M) and challenging (EMBER) datasets, espe-
cially under increasing attack budgets. This is significant
because the problem with malware is that they are evolving
extremely fast e.g. there are hundreds of thousands of new
malware samples every day (KasperskyLab|2020). Further,
results in Figure[3]in the Appendix illustrate, as expected and
in line with the findings in the literature (Madry et al.|2018;
Carlini and Wagner||2017;|Goodfellow, Shlens, and Szegedy
2015), the adversarially trained networks are significantly
more robust than non-adversarially trained counterparts.

Table 1: Robustness of networks against adversarial malware
generated with increasing attack budgets.

Attack budget
0 0.03 005 0.1 0.2 0.3
Adv-FFNN 9538 93.31 89.92 47.74 1734 133
Adv-MalBayes 95.52 94.20 90.53 62.86 2542 23.10
Adv-FFNN 86.88 82.44 79.48 64.00 5132 4277
Adv-MalBayes 89.17 86.73 84.79 78.03 63.06 52.63

Dataset Networks

SOREL-20M

EMBER

Robustness (against Problem-Space Adversarial Mal-
ware). In this section, we evaluate the robustness of different
networks against functional, malicious and real adversarial
malware in the problem space. We employ two evaluation
sets. Set A includes real malware collected from a previ-
ous study (Mantovani et al|2020) and includes 7137 virus
samples. We generate the real adversarial malware samples
by utilizing the constant padding attack method proposed
by (Fleshman|2019) used to win the machine learning static
evasion competition (DEFCON|[2019). In particular, 100,000
constant bytes valued 0xA9 were added to a new section
of PE files to ensure the malicious functionality is not al-
tered. The results in Table 2] show that this attack can signif-
icantly degrade the performance of the popular ML-based
malware detector MalConv (Raff et al.|[2018)), however the
LightGBM (Anderson and Roth|[2018)) model is still robust
against this attack (confirming the previous result obtained
by (Fleshman|[2019))). Set B consists of the recent release
by (Erdemir et al.|[2021)). This includes 1001 real adversarial
malware samples generated using the Greedy Attack method
shown to be stronger than the constant padding attack (Flesh{
man|[2019). The results reported in Table [2] show that the
Greedy Attack successfully fools the LightGBM model and
downgrades its robustness to 11.2%. Notably, evaluations
under both sets show the adversarially trained networks on
feature-space adversarial samples (i.e. Adv-FFNN and Adv-
MalBayes) maintained their robustness. Importantly, Adv-
MalBayes achieved very high robustness under both attack
datasets and is a clear demonstration of the effectiveness

of our approach and the validity of the theoretical basis for
training with feature-space adversarial samples.

Table 2: Comparing the robustness of detectors against real
and unseen adversarial malware (problem-space attacks).

LightGBM MalConv. FFNN BNN Adv-FFNN Adv-MalBayes
Set A 92.5% 29.2% 69.5% 72.5% 92.6% 99.9%
Set B 11.2% -1 749% 83.1% 91.8% 99.9%

! The released set is stored as vectorized features and not applicable for MalConv.

The Impact of Number of Parameter Particles. We inves-
tigate the contribution of the number of parameter particles
to the robustness of the networks and report the results in
Table [6] in the Appendix. The robustness of the BNNs is
improved when more particles capable of modeling the multi-
modal posterior are employed. Thus, increasing the number
of parameter particles may further improve the network’s
robustness.

Transferability of Robustness. We also evaluate the robust-
ness of the BNN trained on PGD L, and its transferability
to other attacks, such as FGSM (Goodfellow, Shlens, and
Szegedy|2015)). Table [3|shows that the network trained with
PGD L, is robust to other attacks, in line with (Madry et al.
2018)), where PGD L, is considered as the ‘universal’ at-
tack. Consequently, we can expect our method to improve
robustness against a wide range of other adversarial example
generation methods (Suciu, Coull, and Johns|2019; |[Kolosn{
jaji et al.|2018; |[Kreuk et al.|2018)) adopting the FGSM method
to attempt to generate problem space malware samples.

Table 3: Results demonstrating the transferability of robust-
ness to different attack methods. The evaluated model was
trained on PGD L.

Attack budget
0 0.03  0.05 0.1 0.2 0.3
PGD Lo, 96.29 9497 92.19 69.96 3520 30.79
FGSM - 9528 94.87 9524 9378 92.20

Adv-MalBayes Networks

Conclusion

We proved and demonstrated that training a robust malware
detector on feature-space adversarial examples inherently
generates robustness against problem-space malware samples.
Subsequently, we proposed a Bayesian adversarial learning
objective in the feature space to realize a robust malware
detector in the problem space. Additionally, we explain the
improved performance by proving that our proposed method
bounds the difference between adversarial risk versus empir-
ical risk to improve robustness and show the benefits of a
BNN as a defense method (see Appendix). Our empirical re-
sults, including a production scale dataset, demonstrates new
state-of-the-art performance and robustness benchmarks.

Acknowledgments

This research was supported by the Next Generation Tech-
nologies Fund from the Defence Science and Technology
Group, Australia. We also thank Dr. Sharif Abuadbba for
supporting us in collecting malware samples for the project.



References

Al-Dujaili, A.; Huang, A.; Hemberg, E.; and O’Reilly, U.-M.
2018. Adversarial deep learning for robust detection of binary
encoded malware. In IEEE Security and Privacy Workshops
(SPW).

Anderson, H. S.; and Roth, P. 2018. Ember: an open dataset
for training static PE malware machine learning models.
arXiv preprint arXiv:1804.04637.

Anderson, R.; Barton, C.; Bohme, R.; Clayton, R.; Ganén,
C.; Grasso, T.; Levi, M.; Moore, T.; and Vasek, M. 2019.
Measuring the changing cost of cybercrime. In Workshop on
the Economics of Information Security (WEIS).

Arp, D.; Spreitzenbarth, M.; Hubner, M.; Gascon, H.; Rieck,
K.; and Siemens, C. 2014. Drebin: Effective and explainable
detection of android malware in your pocket. In Network and
Distributed System Security Symposium (NDSS).

Athalye, A.; Carlini, N.; and Wagner, D. 2018. Obfuscated
gradients give a false sense of security: Circumventing de-
fenses to adversarial examples. In International Conference
on Machine Learning (ICML).

Athalye, A.; Engstrom, L.; Ilyas, A.; and Kwok, K. 2018.
Synthesizing robust adversarial examples. In International
Conference on Machine Learning (ICLR).

Backes, M.; and Nauman, M. 2017. LUNA: Quantifying
and Leveraging Uncertainty in Android Malware Analysis
through Bayesian Machine Learning. In IEEE European
Symposium on Security and Privacy (Euro S&P).

Biggio, B.; Corona, I.; Maiorca, D.; Nelson, B.; grndié, N.;
Laskov, P.; Giacinto, G.; and Roli, F. 2013. Evasion attacks
against machine learning at test time. In Joint European
Conference on Machine Learning and Knowledge Discovery

in Databases (ECML PKDD).

Biggio, B.; Fumera, G.; and Roli, F. 2013. Security evaluation
of pattern classifiers under attack. [EEE Transactions on
Knowledge and Data Engineering, 26(4): 984-996.

Biggio, B.; and Roli, F. 2018. Wild patterns: Ten years after
the rise of adversarial machine learning. Pattern Recognition,
84:317-331.

Breiman, L. 1996. Bagging predictors. Machine learning,
24(2): 123-140.

Carbone, G.; Wicker, M.; Laurenti, L.; Patane, A.; Bortolussi,
L.; and Sanguinetti, G. 2020. Robustness of Bayesian Neural
Networks to Gradient-Based Attacks. In Advances in Neural
Information Processing Systems (NeurlPS).

Carlini, N.; Jagielski, M.; and Mironov, I. 2020. Cryptanalytic
extraction of neural network models. In CRYPTO.

Carlini, N.; and Wagner, D. 2017. Towards evaluating the ro-
bustness of neural networks. In IEEE Symposium on Security
and Privacy (S&P).

Chen, Y.; Wang, S.; She, D.; and Jana, S. 2020. On train-
ing robust PDF malware classifiers. In USENIX Security
Symposium.

DEFCON. 2019. Machine Learning Static Evasion Compe-
tition. |https://www.elastic.co/blog/machine-learning-static-
evasion-competition, Accessed: 2022-08-09.

Demetrio, L.; Biggio, B.; Lagorio, G.; Roli, F.; and Armando,
A. 2021. Functionality-preserving black-box optimization
of adversarial windows malware. IEEE Transactions on
Information Forensics and Security, 16: 3469-3478.

Doan, B. G.; Abbasnejad, E. M.; Shi, J. Q.; and Ranasinghe,
D. 2022. Bayesian Learning with Information Gain Provably
Bounds Risk for a Robust Adversarial Defense. In Interna-
tional Conference on Machine Learning (ICML).

Eddy, M.; and Perlroth, N. 2020. https://www.nytimes|
com/2020/09/18/world/europe/cyber-attack-germany-
ransomeware-death.html. Accessed: 2022-12-01.

Erdemir, E.; Bickford, J.; Melis, L.; and Aydore, S. 2021. Ad-
versarial robustness with non-uniform perturbations. In Ad-
vances in Neural Information Processing Systems (NeurIPS).

Fischer, M.; Balunovic, M.; Drachsler-Cohen, D.; Gehr, T.;
Zhang, C.; and Vechev, M. 2019. DI2: Training and querying
neural networks with logic. In International Conference on
Machine Learning (ICML).

Fleshman, W. 2019. Evading Machine Learning Mal-
ware Classifiers. https://towardsdatascience.com/evading-
machine-learning-malware-classifiers-ce52dabdb713. Ac-
cessed: 2022-08-09.

Goodfellow, L. J.; Shlens, J.; and Szegedy, C. 2015. Explain-
ing and Harnessing Adversarial Examples. In International
Conference on Learning Representations (ICLR).

Grosse, K.; Papernot, N.; Manoharan, P.; Backes, M.; and
McDaniel, P. 2016. Adversarial perturbations against deep
neural networks for malware classification. arXiv preprint
arXiv:1606.04435.

Grosse, K.; Papernot, N.; Manoharan, P.; Backes, M.; and
McDaniel, P. 2017. Adversarial examples for malware de-
tection. In European Symposium on Research in Computer
Security (ESORICS).

Harang, R.; and Rudd, E. M. 2020. SOREL-20M: A Large
Scale Benchmark Dataset for Malicious PE Detection. arXiv
preprint arXiv:2012.07634.

Hu, W.; and Tan, Y. 2017. Generating adversarial malware ex-
amples for black-box attacks based on GAN. arXiv preprint
arXiv:1702.05983.

Izmailov, P.; Vikram, S.; Hoffman, M. D.; and Wilson, A. G.
2021. What Are Bayesian Neural Network Posteriors Really
Like? In International Conference on Machine Learning
(ICML).

Jacobs, R. A.; Jordan, M. I.; Nowlan, S. J.; and Hinton, G. E.
1991. Adaptive mixtures of local experts. Neural computa-
tion, 3(1): 79-87.

KasperskyLab. 2020. The number of new malicious files
detected every day increases by 5.2% to 360,000 in 2020.
https://www.kaspersky.com/about/press-releases/2020_the-
number-of-new-malicious-files-detected-every-day-
increases-by-52-t0-360000-1n-2020, Accessed: 2022-04-01.
Kolosnjaji, B.; Demontis, A.; Biggio, B.; Maiorca, D.; Giac-
into, G.; Eckert, C.; and Roli, F. 2018. Adversarial malware
binaries: Evading deep learning for malware detection in

executables. In European Signal Processing Conference (EU-
SIPCO).


https://www.elastic.co/blog/machine-learning-static-evasion-competition
https://www.elastic.co/blog/machine-learning-static-evasion-competition
https://www.nytimes.com/2020/09/18/world/europe/cyber-attack-germany-ransomeware-death.html
https://www.nytimes.com/2020/09/18/world/europe/cyber-attack-germany-ransomeware-death.html
https://www.nytimes.com/2020/09/18/world/europe/cyber-attack-germany-ransomeware-death.html
https://towardsdatascience.com/evading-machine-learning-malware-classifiers-ce52dabdb713
https://towardsdatascience.com/evading-machine-learning-malware-classifiers-ce52dabdb713
https://www.kaspersky.com/about/press-releases/2020_the-number-of-new-malicious-files-detected-every-day-increases-by-52-to-360000-in-2020
https://www.kaspersky.com/about/press-releases/2020_the-number-of-new-malicious-files-detected-every-day-increases-by-52-to-360000-in-2020
https://www.kaspersky.com/about/press-releases/2020_the-number-of-new-malicious-files-detected-every-day-increases-by-52-to-360000-in-2020

Kreal, M.; Svec, O.; Balek, M.; and Jagek, O. 2018. Deep
convolutional malware classifiers can learn from raw exe-
cutables and labels only. In International Conference on
Learning Representations (ICLR) Workshop.

Kreuk, F.; Barak, A.; Aviv-Reuven, S.; Baruch, M.; Pinkas,
B.; and Keshet, J. 2018. Deceiving end-to-end deep learning
malware detectors using adversarial examples. arXiv preprint
arXiv:1802.04528.

Lee, G.-H.; Yuan, Y.; Chang, S.; and Jaakkola, T. 2019. Tight
certificates of adversarial robustness for randomly smoothed
classifiers. In Advances in Neural Information Processing
Systems (NeurlPS).

Liu, Q.; and Wang, D. 2016. Stein Variational Gradient
Descent: A General Purpose Bayesian Inference Algorithm.
Advances in Neural Information Processing Systems (NIPS).

Liu, X.; Li, Y.; Chongruo, W.; and Cho-Jui, H. 2019.
ADV-BNN: Improved Adversarial Defense Through Robust
Bayesian Neural Network. In International Conference on
Learning Representations (ICLR).

MacKay, D. J. 1992. A practical Bayesian framework for
backpropagation networks. Neural computation, 4(3): 448—
472.

Madry, A.; Makelov, A.; Schmidt, L.; Tsipras, D.; and Vladu,
A. 2018. Towards Deep Learning Models Resistant to Ad-
versarial Attacks. In International Conference on Learning
Representations (ICLR).

Mantovani, A.; Aonzo, S.; Ugarte-Pedrero, X.; Merlo, A.; and
Balzarotti, D. 2020. Prevalence and Impact of Low-Entropy
Packing Schemes in the Malware Ecosystem. In Network
and Distributed System Security Symposium (NDSS).

Nguyen, A. T.; Raff, E.; Nicholas, C.; and Holt, J. 2021.
Leveraging Uncertainty for Improved Static Malware Detec-
tion Under Extreme False Positive Constraints. In Interna-
tional Joint Conferences on Artificial Intelligence (IJCAI)
Workshop.

Peng, H.; Gates, C.; Sarma, B.; Li, N.; Qi, Y.; Potharaju, R.;
Nita-Rotaru, C.; and Molloy, I. 2012. Using probabilistic
generative models for ranking risks of android apps. In
ACM Conference on Computer and Communications Security

(CCS).

Pierazzi, F.; Pendlebury, F.; Cortellazzi, J.; and Cavallaro, L.
2020. Intriguing properties of adversarial ml attacks in the
problem space. In IEEE Symposium on Security and Privacy
(S&P).

Quiring, E.; Maier, A.; and Rieck, K. 2019. Misleading au-
thorship attribution of source code using adversarial learning.
In USENIX Security Symposium.

Raff, E.; Barker, J.; Sylvester, J.; Brandon, R.; Catanzaro,
B.; and Nicholas, C. K. 2018. Malware detection by eating
a whole exe. In AAAI Conference on Artificial Intelligence
Workshop.

Raff, E.; Fleshman, W.; Zak, R.; Anderson, H. S.; Filar, B.;
and McLean, M. 2021. Classifying sequences of extreme
length with constant memory applied to malware detection.
In AAAI Conference on Artificial Intelligence.

Ritter, H.; Botev, A.; and Barber, D. 2018. A scalable laplace
approximation for neural networks. In International Confer-
ence on Learning Representations (ICLR).

Rolnick, D.; and Kording, K. 2020. Reverse-engineering deep
ReLU networks. In International Conference on Machine
Learning (ICML).

Saxe, J.; and Berlin, K. 2015. Deep neural network based
malware detection using two dimensional binary program
features. In International Conference on Malicious and Un-
wanted Software (MALWARE).

Schultz, M. G.; Eskin, E.; Zadok, F.; and Stolfo, S. J. 2001.
Data mining methods for detection of new malicious executa-
bles. In IEEE Symposium on Security and Privacy (S&P).

Sebastian, M.; Rivera, R.; Kotzias, P.; and Caballero, J. 2016.
Avclass: A tool for massive malware labeling. In Interna-
tional Symposium on Research in Attacks, Intrusions, and
Defenses (RAID).

Suciu, O.; Coull, S. E.; and Johns, J. 2019. Exploring adver-
sarial examples in malware detection. In IEEE Security and
Privacy Workshops (SPW).

Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.;
Goodfellow, I.; and Fergus, R. 2013. Intriguing properties of
neural networks. arXiv preprint arXiv:1312.6199.

Tramer, F.; Zhang, F.; Juels, A.; Reiter, M. K.; and Ristenpart,
T. 2016. Stealing machine learning models via prediction
apis. In USENIX Security Symposium.

Wang, B.; Jia, J.; Cao, X.; and Gong, N. Z. 2021. Certi-
fied robustness of graph neural networks against adversarial
structural perturbation. In ACM SIGKDD Conference on
Knowledge Discovery & Data Mining (KDD).

Wicker, M.; Laurenti, L.; Patane, A.; Chen, Z.; Zhang, Z.; and
Kwiatkowska, M. 2021. Bayesian Inference with Certifiable
Adversarial Robustness. In International Conference on
Artificial Intelligence and Statistics (AISTATS).

Wolpert, D. H. 1992. Stacked generalization. Neural net-
works, 5(2): 241-259.

Xu, W.; Qi, Y.; and Evans, D. 2016. Automatically evad-
ing classifiers. In Network and Distributed System Security
Symposium (NDSS).

Ye, N.; and Zhu, Z. 2018. Bayesian adversarial learn-
ing. In Advances in Neural Information Processing Systems
(NeurlPS).

Zimmermann, R. S. 2019. Comment on" Adv-BNN: Im-
proved Adversarial Defense through Robust Bayesian Neural
Network". arXiv preprint arXiv:1907.00895.



