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Abstract

The ongoing success of visual question answering meth-

ods has been somewhat surprising given that, at its most

general, the problem requires understanding the entire va-

riety of both visual and language stimuli. It is particularly

remarkable that this success has been achieved on the basis

of comparatively small datasets, given the scale of the prob-

lem. One explanation is that this has been accomplished

partly by exploiting bias in the datasets rather than devel-

oping deeper multi-modal reasoning. This fundamentally

limits the generalization of the method, and thus its prac-

tical applicability. We propose a method that addresses

this problem by introducing counterfactuals in the train-

ing. In doing so we leverage structural causal models for

counterfactual evaluation to formulate alternatives, for in-

stance, questions that could be asked of the same image set.

We show that simulating plausible alternative training data

through this process results in better generalization.

1. Introduction

Recent advances in computer vision and natural lan-

guage understanding have paved the way for a variety of

tasks that combine visual and textual modalities [28, 15, 7,

5, 33]. Visual Question Answering (VQA) is one such task

in which the goal is to answer a question framed in natu-

ral language that relates to an image. VQA thus requires a

high-level understanding of the visual scene and the ques-

tion, and an ability to relate (or ground) the two. Much

of the interest around VQA, and the associated vision-and-

language problems, stems from the fact that success might

represent a step toward artificial intelligence. A variety of

real-world applications have arisen also, including aiding

the visually impaired, searching through large quantities of

visual data via natural language interfaces, and flexible task-

ing of robots.

Current end-to-end VQA models achieve high accura-

cies on most of the available benchmarks and surpass hu-

man performance in a selection of cases (compositional rea-

soning [25], for example). It has been shown, however, that

these methods exploit statistical regularities and biases in

the data to achieve this performance [25, 33, 23, 6]. In

addition, although these approaches are expected to merge

information from multiple modalities, in practice they of-

ten exploit unimodal biases and ignore the other modalities

entirely. In addition, particular signals in the input trigger

specific answers; for instance, when the image contains a

banana, the answer is most likely to be yellow, irrespective

of the remainder of the image, or the question. This depen-

dence on spurious correlations in the training data leaves

VQA methods vulnerable to a failure to generalize. In addi-

tion, this phenomenon highlights the lack of high-level un-

derstanding of the input and its connection to other modali-

ties.

To remedy the weaknesses identified above and im-

prove generalization, we propose to utilize counterfactuals

[30, 12] in the learning process. In traditional causal infer-

ence counterfactuals are unobserved scenarios, and are of-

ten used to estimate the effect of an intervention that is not

directly represented in the data. In machine learning they

can equally represent a potential training data element for

which we do not have a label, or a data-label pair for which

we do not have a reward. This is particularly relevant in

those supervised learning settings where more than one true

label might apply to each training data element, yet only one

true answer is typically observed. This is the case in many

vision-and-language problems, as the fact that the training

set documents a particular answer to a VQA question does

not mean that every alternate answer is wrong. This is re-

ferred to as bandit feedback [24], and such problems are

labelled nonstochastic multiarmed bandit problems [9]. In

the context of VQA, counterfactual analysis leads us to ask

“what would have happened if we observed a different im-

age or asked a different question, given the past observa-

tions”.

We consider the causal model underlying the training

data, and introducing an extra (exogenous) variable that

governs the question and image generation (from which the

observed answers are produced). Then, we learn a dis-

tribution for that variable, providing a model of how the

observational data was generated. Subsequently, we ask
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“what would be the minimum alteration to the question or

image that could change the answer”. To that end, we

choose the exogenous variable such that the question or im-

age generated using that variable yields an incorrect answer,

thus effectively injecting an intervention into our causal

model. Since the intervention can degrade the model’s per-

formance, we “reason” about these counterfactual instances

by formulating an alternative to conventional empirical risk

minimization, allowing the model to learn both from obser-

vational and counterfactual instances. This implicitly forces

the VQA model to use both input modalities instead of rely-

ing on statistical regularities specific to either of them. Fur-

ther, training a model to both learn to answer and “reason”

about the intervention in questions and images, encourages

generalization. In Fig. 1, our approach is summarized.

By effectively “asking the algorithm” what would have

happened, we aim to highlight the most interesting cases of

disagreement between the counterfactuals and the training

observations, while also demonstrating implicitly why the

learned model is preferred.

We describe extensive experiments on VQA-CP [6],

VQA 2.0 [7] and Embodied QA [14] (where agent requires

navigation to answer questions) and demonstrate the ability

of our approach to improve generalization. Our contribu-

tions in this paper are:

• We provide a counterfactual framework under which

the interventions in the inputs, either the question or

image, are anticipated. We show that a simple model of

learning the distribution of an exogenous intervention

variable of the observational data, and subsequently

counterfactual samples generated from that variable

improvs generalization. We encourage the model to

reason about “what the answer could be about a coun-

terfactual image or question”.

• We provide a theoretical analysis for the proposed ap-

proach to shed light on its underlying working mecha-

nism. In addition, we show a lower bound on the likeli-

hood of the counterfactuals based on the observations.

• Our extensive experiments show that our simple yet

powerful approach is capable of improving the gener-

alization ability of diverse multimodal and unimodal

vision and language tasks. In VQA-CP we observe

more than 2% improvement over the baseline when us-

ing the full set and 7% when using a fraction of the

dataset. In Embodied QA, our approach improves the

state-of-the-art by more than 2%.

2. Related Work

Counterfactuals [12, 30] have gained recent interest in var-

ious areas in machine learning, in particular in applying in-

sights from causal inference to augment the training as in

Observation 

Dataset

Exogenous Variable

Model Answer Update ERM

Counterfactual exogenous variable Generate 

Counterfactuals

Eq. (1)

Eq. (2)

Eq. (3
)

Eq. (2)

Eq. (4)

Figure 1: The training process with counterfactuals. We

infer the posterior on the exogenous variables. Subse-

quently generate counterfactual samples using that variable

and evaluate its output.

bandit settings [24, 2], reinforcement learning [10], recom-

mendation [39] and explanation [19]. Adversarial learning

[17] is a prime instance of use of counterfactuals in learn-

ing and was shown to improve performance (e.g. [42]).

However, most of the state-of-the-art in this area focus on

the analysis of the outcome of an intervention of sorts, i.e.

change in the input or model. Our approach however, fo-

cuses on both proper generation of the counterfactuals from

intervention and ensuring the outcome is adjusted in an al-

ternative risk minimization.

Data Augmentation lies at the heart of successful machine

learning where substantial domain knowledge is leveraged

to design suitable data transformations (e.g. rescaling, rota-

tion, etc) leading to improved generalization. While learn-

ing these invariances, using for instance generative models,

can potentially alleviate the problem, their use is nontrivial.

Recently, MixUp [41] was proposed as a simple means

for data augmentation and regularization which does not

require significant domain knowledge. Similar to label

smoothing, the supervision of every example is not overly

dominated by the ground-truth label. Moreover, the aug-

mented data is transformed from training instances to es-

tablish a linear relationship between data augmentation and

the supervision signal. However, it requires sampling a mix-

ing parameter that is not trivial to choose. Our approach on

the other hand, learns to interpolate depending on the dif-

ficulty of producing its output for the model and the land-

scape in the feature space, hence harnessing the advantages

of MixUp for sample generation.

Biases in VQA datasets and models are major pitfalls in

current models where superficial correlations between in-

puts from one modality and the answers are exploited by

models [29, 18, 33]. Unfortunately, biased models that ex-

ploit statistical shortcuts from one modality usually reach

impressive accuracy on most of the current benchmarks.

VQA-CP [6] is a recent diagnostic datasets containing dif-

ferent answer distributions for each question-type leading

to different distribution of train and test splits. Consequen-

tially, models biased towards one of the modality often fail

at this benchmark. Human provided additional balancing

data, for instance in the case of VQA v2 [18] has not re-

solved the issue. More elaborate models to avoid biases
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such as Grounded VQA [6] introduces additional submod-

ules that are not trivial to be used with novel architectures.

Similarly, [33] proposed a model-agnostic learning strategy

to overcome language priors in VQA models by directly

penalizing the input question-only bias. In [13], the authors

cluster training questions using to their prefix to prevent the

model from relying on them as features.

Our method is model-agnostic, easy to implement and

does not need an elaborate parameter tuning or prior knowl-

edge. In addition, our approach naturally leverages inher-

ent dependencies to improve generalization and discourage

simple exploitation of the biases by the model. Our counter-

factual training approach discourages learning the biases by

relying on the capacity to generate samples that can change

the predictions.

2.1. Visual Question Answering

Visual Question Answering (VQA) is the task of an-

swering previously unseen questions framed in natural lan-

guage about a previously unseen image. For training, we

are interested in learning a model from a training set made

up of image v, question q and answer a triplets D =
{〈qi,vi, ai〉}

n
i=1. During test time, given an image and

question, the trained model predicts the correct answer.

The classical approach for VQA is to use an embedding

of the questions eq = fq(q), an embedding of the image

ev = fv(v) and a fusion function of the two z = h(eq, ev)
into what is known as the joint space. We denote by θ all of

the parameters of the deep models used to learn these repre-

sentations and generate answers. Using better embeddings

yields better joint space representations and consequently

more accurate answers. For brevity below we omit the pa-

rameters in the models, i.e. we use p(a|q,v) as a shorthand

for p(a|q,v,θ).

2.2. Counterfactuals

In the following we provide a background on counter-

factuals that will form the basis for the rest of this paper.

Interested readers are referred to [30] for further details

Definition 1 (Structural Causal Model (SCM)). A struc-

tural causal model M consists of a set of independent (ex-

ogenous) random variables u = {u1, . . . ,un} with dis-

tribution P (u), a set of functions F = {f1, . . . , fn}, and

a set of variables X = {X1, . . . , Xn} such that Xi =
fi(PAi,ui), ∀i, where PAi ⊆ X \ Xi is the subset of X

which are parents of Xi. As a result, the prior distribution

P (u) and functions determine the distribution PM.

An SCM defines the data generating process and the dis-

tribution of the observations. Using this model, we can in-

vestigate the consequences of intervention.

Definition 2 (Interventional Distribution). For an SCM M,

an intervention I = do
(

Xi := f̃i(P̃Ai,ui)
)

corresponds

to replacing the structural mechanism fi(PAi,ui) with

f̃i(P̃Ai,ui). We can simply write do(Xi = x) to denote

the intervention. The resulting SCM is denoted MI , and

the resulting interventional distribution is denoted PM;I .

We can also define the counterfactual distribution which

tells us what might have happened had we acted differently.

Definition 3 (Counterfactual Distribution). Given an SCM

M and an observed assignment X = x over any set of ob-

served variables, the counterfactual distribution PM|X=x;I

corresponds to the distribution entailed by the SCM MI

using the posterior distribution P (u|X = x).

For an SCM M, the counterfactual distribution can be

estimated by first inferring the posterior over exogenous

variables and then passing that distribution through the

modified structural model MI to obtain a counterfactual

distribution over other variables1.

3. Counterfactual Vision and Language (CVL)

Our intuition is that the functions that extract the features

in a VQA system, either from the image or the question,

are prone to focusing on spurious correlations in the data,

which diverts them from modeling the deeper relations that

generalize better. Hence, we encourage the learning algo-

rithm to consider counterfactuals–a set of imaginary alter-

native samples. Training a model to both learn to answer,

and “reason” about the intervention in the questions and im-

ages allows better generalization. To that end, we construct

the SCM as shown in Fig. 2 where the functions for learning

the embeddings are conditioned on the exogenous variables.

As is the convention for intervention in counterfactual

reasoning, we are interested in replacing the embedding

functions by their corresponding counterfactuals, that is, fv
is replaced by f̃v(v,u

v) or fq by f̃q(q,u
q) where uv and

uq are exogenous variables for image (vision module) and

question (language module), respectively. Note that f̃v(·, ·)
and f̃q(·, ·) are the functions of the exogenous variables for

a given image and question pair. Effectively our approach

reasons about the interventions in the embedding extrac-

tions. We use u = [uv,uq] to denote both of the exogenous

variables. We denote by q̃ and ṽ the variables obtained af-

ter the intervention and ẽq and ẽv as their corresponding

embeddings. This intuitively allows our model to answer

image-based questions it has never observed. We are gen-

erally interested in the following objectives: (1) the joint

space of the question-image embedding must lead to a low-

error rate on the factual data; (2) the conditional distribu-

tion of the factual and counterfactual data considering the

exogenous distribution must be similar; (3) the distribution

of the exogenous variables must be obtained from the obser-

vations; and (4) the embedding has to yield small error on

1Called abduction, action, and prediction in [30]
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q̃
<latexit sha1_base64="tGq5CtJInpJfR+LevlJkHGWieSI=">AAAB+3icbVDLSsNAFJ3UV62vWJduBovgqiRWfOyKblxWsA9oQplMJu3QySTOTMQS8ituXCji1h9x5984SYOo9cDA4Zx7uWeOFzMqlWV9GpWl5ZXVtep6bWNza3vH3K33ZJQITLo4YpEYeEgSRjnpKqoYGcSCoNBjpO9Nr3K/f0+EpBG/VbOYuCEacxpQjJSWRmbdUZT5JHVCpCZekN5l2chsWE2rAFwkdkkaoERnZH44foSTkHCFGZJyaFuxclMkFMWMZDUnkSRGeIrGZKgpRyGRblpkz+ChVnwYREI/rmCh/txIUSjlLPT0ZB5R/vVy8T9vmKjg3E0pjxNFOJ4fChIGVQTzIqBPBcGKzTRBWFCdFeIJEggrXVetKOEix+n3lxdJ77hpt5qtm5NG+7Ksowr2wQE4AjY4A21wDTqgCzB4AI/gGbwYmfFkvBpv89GKUe7sgV8w3r8A/xSVMw==</latexit>

(c) Our SCM with Intervention

Figure 2: The difference between a typical VQA graphical model (in Fig. 2a), our corresponding causal model (in Fig. 2b) and an example

of intervention in the question representation of this model (in Fig. 2c). In our model two exogenous variables uq and u
v are incorporated

to learn and reason about the intervention caused by these variables.

What are those animals?

h(eq, ev)
<latexit sha1_base64="UavnuOles7kl8S5IiX1dYfd+iTo=">AAACBXicbVDLSsNAFJ3UV62vqEtdDBahgpTEio9d0Y3LCvYBbSyT6aQdOpnEmUmhhG7c+CtuXCji1n9w5984SYPUx4GBM+fcy733uCGjUlnWp5Gbm19YXMovF1ZW19Y3zM2thgwigUkdBywQLRdJwigndUUVI61QEOS7jDTd4WXiN0dESBrwGzUOieOjPqcexUhpqWvuDkodH6mB68Vkcnt3OPMZHXTNolW2UsC/xM5IEWSodc2PTi/AkU+4wgxJ2batUDkxEopiRiaFTiRJiPAQ9UlbU458Ip04vWIC97XSg14g9OMKpupsR4x8Kce+qyuTJeVvLxH/89qR8s6cmPIwUoTj6SAvYlAFMIkE9qggWLGxJggLqneFeIAEwkoHV0hDOE9w8n3yX9I4KtuVcuX6uFi9yOLIgx2wB0rABqegCq5ADdQBBvfgETyDF+PBeDJejbdpac7IerbBDxjvX7R9mNg=</latexit>

h(eq, ẽv)
<latexit sha1_base64="1mfH2K/sVjKsVI7LJoUzo1fA7qc=">AAACDXicbVDJSgNBEO2JW4xb1KOXwShEkDAx4nILevEYwSyQmYSenpqkSc9id08gDPkBL/6KFw+KePXuzb+xJxnc4oOCx3tVVNWzQ0aFNIwPLTM3v7C4lF3OrayurW/kN7caIog4gToJWMBbNhbAqA91SSWDVsgBezaDpj24TPzmELiggX8jRyFYHu751KUESyV183v9oulh2bfdGMad20NTUuZA/K2NO8ODbr5glIwJ9FlSTkkBpah18++mE5DIA18ShoVol41QWjHmkhIG45wZCQgxGeAetBX1sQfCiiffjPV9pTi6G3BVvtQn6s+JGHtCjDxbdSZXir9eIv7ntSPpnlkx9cNIgk+mi9yI6TLQk2h0h3Igko0UwYRTdatO+phjIlWAuUkI5wlOvl6eJY2jUrlSqlwfF6oXaRxZtIN2URGV0SmqoitUQ3VE0B16QE/oWbvXHrUX7XXamtHSmW30C9rbJ2oPnI4=</latexit>

uv
<latexit sha1_base64="a5KgjKPQetxPEIF/oFiM/AFMr3o=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiQqPnZFNy4r2Ac0sUymk3boZBJmJoUS+htuXCji1p9x5984SYOo9cDA4Zx7uWeOH3OmtG1/WqWl5ZXVtfJ6ZWNza3unurvXVlEiCW2RiEey62NFORO0pZnmtBtLikOf044/vsn8zoRKxSJxr6cx9UI8FCxgBGsjuW6I9cgP0mT2MOlXa3bdzoEWiVOQGhRo9qsf7iAiSUiFJhwr1XPsWHsplpoRTmcVN1E0xmSMh7RnqMAhVV6aZ56hI6MMUBBJ84RGufpzI8WhUtPQN5NZRvXXy8T/vF6ig0svZSJONBVkfihIONIRygpAAyYp0XxqCCaSmayIjLDERJuaKnkJVxnOv7+8SNondee0fnp3VmtcF3WU4QAO4RgcuIAG3EITWkAghkd4hhcrsZ6sV+ttPlqyip19+AXr/QulopI4</latexit>

ev
<latexit sha1_base64="OhTUdeVHavEoYQBf/AxlWPIxQpo=">AAAB83icbVDLSsNAFJ3UV62vqks3g0VwVRIVH7uiG5cV7AOaWCbTm3boZBJmJoUS+htuXCji1p9x5984SYOo9cDA4Zx7uWeOH3OmtG1/WqWl5ZXVtfJ6ZWNza3unurvXVlEiKbRoxCPZ9YkCzgS0NNMcurEEEvocOv74JvM7E5CKReJeT2PwQjIULGCUaCO5bkj0yA9SmD1M+tWaXbdz4EXiFKSGCjT71Q93ENEkBKEpJ0r1HDvWXkqkZpTDrOImCmJCx2QIPUMFCUF5aZ55ho+MMsBBJM0TGufqz42UhEpNQ99MZhnVXy8T//N6iQ4uvZSJONEg6PxQkHCsI5wVgAdMAtV8agihkpmsmI6IJFSbmip5CVcZzr+/vEjaJ3XntH56d1ZrXBd1lNEBOkTHyEEXqIFuURO1EEUxekTP6MVKrCfr1Xqbj5asYmcf/YL1/gWNMpIo</latexit>

ẽv
<latexit sha1_base64="+cqCpgcsVbvX8Ec3W4Y3UpN/CnU=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5CRbBVUmt+NgV3bisYB/QxDKZ3LRDJw9mJoUagr/ixoUibv0Pd/6NkzSIWg8MHM65l3vmOBGjQprmp1ZaWFxaXimvVtbWNza39O2djghjTqBNQhbynoMFMBpAW1LJoBdxwL7DoOuMrzK/OwEuaBjcymkEto+HAfUowVJJA33PkpS5kFg+liPHSyBN7yYDvWrWzBzGPKkXpIoKtAb6h+WGJPYhkIRhIfp1M5J2grmkhEFasWIBESZjPIS+ogH2QdhJnj41DpXiGl7I1Qukkas/NxLsCzH1HTWZhRR/vUz8z+vH0ju3ExpEsYSAzA55MTNkaGRVGC7lQCSbKoIJpyqrQUaYYyJVYZW8hIsMp99fnied41q9UWvcnFSbl0UdZbSPDtARqqMz1ETXqIXaiKB79Iie0Yv2oD1pr9rbbLSkFTu76Be09y+IBpYP</latexit>

eq
<latexit sha1_base64="FkVN3UToCxh4UF8qpPVIGf/4ODw=">AAAB83icbVDLSsNAFJ3UV62vqks3g0VwVRIVH7uiG5cV7AOaWCbTm3boZBJnJkIJ/Q03LhRx68+482+cpEHUemDgcM693DPHjzlT2rY/rdLC4tLySnm1sra+sblV3d5pqyiRFFo04pHs+kQBZwJammkO3VgCCX0OHX98lfmdB5CKReJWT2LwQjIULGCUaCO5bkj0yA9SmN7d96s1u27nwPPEKUgNFWj2qx/uIKJJCEJTTpTqOXasvZRIzSiHacVNFMSEjskQeoYKEoLy0jzzFB8YZYCDSJonNM7VnxspCZWahL6ZzDKqv14m/uf1Eh2ceykTcaJB0NmhIOFYRzgrAA+YBKr5xBBCJTNZMR0RSag2NVXyEi4ynH5/eZ60j+rOcf345qTWuCzqKKM9tI8OkYPOUANdoyZqIYpi9Iie0YuVWE/Wq/U2Gy1Zxc4u+gXr/QuFnpIj</latexit>
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Figure 3: Counterfactual examples that can be generated for a

given image. The fusion function h is used with the observational

data as well as the counterfactual data to predict the answer. For

the counterfactual loss, we need to consider the relationship be-

tween the predicted counterfactual answer and its observational

counterpart.

the unobserved counterfactual distribution (obtained from

the intervention in the structural model).

The first objective is the same as any other vision and

language task. The second is a necessary constraint to en-

sure using a model from the observations we can predict

answers for counterfactuals. The third objective ensures the

possible intervention distribution from the exogenous vari-

able is learned as part of the model. Lastly, our approach

should be able to reason about the answer to the counterfac-

tual instances (see Fig. 3 for an example). As such, we de-

vise the following steps through which our model is trained

and the distribution of the exogenous variable is found:

1. Infer the predictive model for the observed data using

one step of the conventional risk minimization.

2. Perform intervention I on M. This yields MI , which

entails the counterfactual distribution pdo(I)|q̃,ṽ .

3. Reason about the effect of that intervention on the an-

swer and the loss that incurs.

Intuitively, first we learn what distribution of the exogenous

variable is obtained from the observations, then model how

the answer is affected by the intervention on this variable.

4. Counterfactual Distribution

The counterfactual distribution is the posterior of the ex-
ogenous variables obtained from the observations. Hence,
using the training data we are interested in2

p(u|D) ∝ p(u)
n
∏

i=1

p(ai|qi,vi)p(vi|u
v)p(qi|u

q). (1)

We use independent priors, i.e. p(u) = p(uq)p(uv) with
Beta distributions for uv and uq (i.e. uv ∼ Beta(α0, β0)).
Although we could estimate p(vi|u

v) and p(qi|u
q) using

various methods (including autoencoders [27, 1] and GANs
[16, 4, 3]), we use a simple approach to model the question
or image’s conditional likelihood. To obtain the posterior,
considering the generating process of qi and vi for a given
sample of the variable uq,uv and an arbitrary constant 0 ≤
ǫ < 1, we have

q ∼ p(q|uq) =

{

q u
q ≥ 1− ǫ

u
qq ⊕ (1− u

q)q′, otherwise
, and

v ∼ p(vi|u
v) =

{

v u
v ≥ 1− ǫ

u
vv ⊕ (1− u

v)v′, otherwise
(2)

where q′ and v′ are uniformly sampled at random from the

dataset and ⊕ denotes an interpolation. It is easy to see

that for ǫ ! 0 we have more interpolated samples and for

ǫ ! 1, we obtain samples that are independent of the prior.

An advantage of this approach of sampling the observations

is that we effectively reduce the conditional independence

assumption of the training data allowing for the relation be-

tween observations to be established.

Since we use all conjugate priors, the posterior is also

a Beta distribution with parameters α, β where α = α0 +
∑

I[ai = argmax p(ai|qi,vi)] and β = β0 +
∑

I[ai 6=
argmax p(ai|qi,vi)]. Intuitively, samples from the regions

of the prior that produce the correct answers are “success-

ful” and encourage the posterior to concentrate. Notice that

the samples from the posterior are drawn from the regions

where the likelihood of the correct answer is higher (since

the expectation of the posterior is α/(α+ β)).

2We note that without loss of generality and for brevity we drop the

dependence on the embedding features p(ai|qi,vi) = p(ai|e
v , eq) ×

δ(eq − fq(qi))× δ(ev − fv(vi)) where δ is the Dirac delta.
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4.1. Generating Counterfactuals

Once the posterior on the exogenous variables p(u|D) is

obtained, we perform the intervention. That is, we generate

the counterfactuals and replace the v (or q) with its alter-

native ṽ (or q̃) and anticipate the answer. This corresponds

to replacing the function fv(·, ·) (or fq(·, ·)) with an alter-

native f̃v(·, ·) (or f̃q(·, ·)) which leads to a different answer

prediction.

In obtaining the counterfactual samples we are interested

in the minimum interventions that will change the answer

for a given question-image pair (q,v) to (q̃, ṽ) when us-

ing the generating process in Eq. 2. This corresponds to

a sample from the posterior of the exogenous variable with

high likelihood (minimum intervention) that will alter the

answer for (q,v) to an incorrect one. As such, we formal-

ize the problem as:

max
u

log(pdo(I)|q,v(q̃, ṽ|u))

s.t. ã = argmaxa′ pdo(I)|q,v(a′|q̃, ṽ), ∀ã 6= a

0 ≤ u < 1

Considering the generative process in Eq. 2, the minimum
intervention (the minimum edit of the factual [32, 19]) is
achieved when u is largest. Since the constraint is not com-
putationally feasible, we relax the objective and choose the
variable that has the minimum likelihood of having the same
answer as the observations. Thus, we choose u from the re-
laxed alternative (we project u to be bounded in [0, 1))

max
u

‖u‖2 − λ log
(

pdo(I)|q,v(a|q̃, ṽ)
)

(3)

where λ is a hyper-parameter. We note that simply sampling

from the posterior p(u|D) and generating v (or q) to infer

the answer, is not the counterfactual (alternating between

sampling the variable u and learning parameter θ resem-

bles conventional Gibbs sampling). Hence, this step is crit-

ical to obtain instances that are not merely from the learned

distribution, yet very likely. Consequently, enabling our ap-

proach to generalize better beyond observations.

4.2. Counterfactual Loss

We alternate between intervening in the inputs, and
minimizing the risk on the corresponding counterfac-
tual along with the observations. As is common prac-
tice in empirical risk minimization (ERM), the objective
in using observational training instances is minimizing
Eq,vEp(a|q,v)[ℓ(fθ(q,v), a)] where ℓ(fθ(q,v)) is the loss

of the function predicting the answer. Note that in practice
fθ and p(a|q,v,θ) may be the same function or share ar-
chitecture (e.g. p(a|q,v,θ) = softmax(fθ(q,v))). In the
case of using counterfactuals, we can rewrite the risk by
changing the distribution [12]:

R(θ) = Eq,vEp(a|q,v)[ℓ(fθ(q,v), a)]

= Eq,vEpdo(I)|q,v(a|q̃,ṽ)

[

ℓ(fθ(q,v), a)
p(a|q,v,θ)

pdo(I)|q,v(a|q̃, ṽ,θ)

]

Note that pdo(I)|q,v(a|q̃, ṽ,θ) has part of SCM altered. In-
tuitively, the counterfactuals that have smaller scores are
more penalized and conversely the over-confident ones are
discouraged. This subsequently adjusts the decision bound-
ary to be discriminative for both observations and counter-
factuals. Furthermore, since this risk can have a very high
variance we can clip this value similar to [12],

RM (θ) = Eq,vEp̃u(a|q,v)

[

ℓ(fθ(q,v), a)

×min
{

M,
p(a|q,v,θ)

pdo(I)|q,v(a|q̃, ṽ,θ)

}]

This is because we may have very low probability in pre-
dicting an output of an intervened observation. Thus, the
empirical counterfactual risk is,

R̂M (θ) =
1

n

n
∑

i=1

ℓ(fθ(qi,vi), ai)× ωi(θ) (4)

where ωi(θ) = min
{

M,
p(ai|qi,vi,θ)

pdo(I)|q,v(a|q̃, ṽ,θ)

}

.

Here, ωi(θ) is the clipped ratio of evaluation of the factual

sample i and its corresponding counterfactual. We inten-

tionally use a shorthand to underscore The fact that the pa-

rameters are optimized with respect to θ in p. The objective

of the counterfactual risk minimization for vision and lan-

guage tasks is therefore

R̂M∗

= argmin
θ

R̂M (θ)

In practice, we alternate between the conventional ERM

(i.e. when ω(θ) = 1) and the counterfactual risk.

4.3. Further Analysis

When we generate samples in Eq. 2, q′ is likely to have

a different answer to q (with probability (1 − na/n) for na

denoting the number of instances with answer a). As such,

interpolating between the questions and images will lead to

samples for which the answer is uncertain. In the case of

the generated counterfactuals, however, such interpolations

are in fact close to the decision boundary. Hence, when

weighted by the confidence of the classifier in Eq. 4, the

connection between samples in the fusion space (i.e. the

common semantic space) is adjusted to account for the sen-

sitivity of the representations to changes in the input.

Furthermore, one main question is how do we know that

the interventions won’t lead to divergence, or learning use-

less models. We can derive the bound on the risk using the

following theorem:

Theorem 4. Denote ui(θ) ≡ ℓ(fθ(qi,vi), ai)ωi(θ), u ≡
∑n

i=1 u
i(θ)/n, V̂(u) ≡

∑n

i=1

(

ui(θ)− u
)2

/(n − 1) and

Qγ ≡ log (10 · ǫ/γ) for 0 < γ < 1 and ǫ the ǫ-cover for
the function class that predicts the answer. With probability
at least 1− γ for n ≥ 16 we have

R(θ) ≤ R̂M (θ) +

√

18V̂(u)Qγ/n+ 15MQγ/(n− 1)

510048



Proof. See the supplementary material.

This result implies that when we have the counterfactual

risk minimized, we achieve the minimum variance.

We note that we can compute the density of the counter-

factuals based on the observations, i.e.

pdo(I)(q̃, ṽ) = E(q,v)∼p(q,v)

[

pdo(I)|q,v (q̃, ṽ)
]

(5)

This result shows that the density of intervened variables

(q̃, ṽ) is the marginal of the observations. Hence, the fac-

tual, counterfactual and exogenous variables are connected

with the following lemma:

Lemma 5. We have the following lower bound on the log-
density of the counterfactuals:

log(pdo(I)(a, q̃, ṽ)) ≥ E(q,v)∼p(q,v)

[

log(pdo(I)|q,v(a|q̃, ṽ))
]

+E
u∼p(u)

[

log(pdo(I)(q̃, ṽ|u))
]

.

Proof. See the supplementary material.

In fact we can show that even if u is not drawn from the
true generating prior, we can use an arbitrary distribution q
and obtain an alternative lower bound to that of Lemma 5:

log(pdo(I)(a, q̃, ṽ))≥ E(q,v)∼p(q,v)

[

log(pdo(I)|q,v(a|q̃, ṽ))
]

+ Eq[log(p
do(I)(q̃, ṽ|u))] (6)

+H(q)−Hq(p).

Effectively using Lemma 5, we know even if the distribu-

tion of the exogenous variable for generating the counter-

factuals deviates from the true posterior obtained from ob-

servations, we can lower-bound the marginal of the counter-

factuals which depends on the likelihood of predicting the

correct answer, the difference of entropy of the true prior

versus the one used and the likelihood of the counterfactual

examples.

5. Experiments

To evaluate the performance of our approach, we con-

struct experiments on various datasets. We note that our

approach is agnostic to the base model used and as such is

widely applicable to a wide range of applications. To op-

timize the objective in Eq. (3), we use a simple gradient

ascent where we set the learning rate to a constant. We use

prior for the exogenous variable as Beta(0.1, 0.1) for the

experiments unless otherwise stated. We alternate between

the observational training and the counterfactuals.

5.1. Unimodal Problems

The motivation of our approach is multimodal problems,

but it is equally effective for problems involving only a sin-

gle modality. In this case the description of the process

LSTM T LSTM+P T+P LSTM+C T+C

Random 84.4 82.0 84.53 85.21 85.61 85.56

GloVe 84.9 86.4 85.77 87.1 87.24 88.4

Table 1: Accuracy (%) obtained by the testing methods using

LSTM (with randomly initialized, trainable embeddings). Best

results highlighted in Bold. T abbreviates TreeLSTM [40]; +P and

+C indicate posterior and Counterfactuals respectively.

stands, with the exception that either uv or uq is inferred

and used for counterfactual generation.

Stanford Sentiment Treebank (SST) [38] is a natural lan-

guage dataset of movie reviews (neutrals are removed in our

experiments). This dataset contains 11855 instances with

vocabulary size of 17836 and 5 classes. We follow the im-

plementation of [40] where a tree structured LSTM is used

with this dataset. We use two alternative baselines for em-

bedding words to be used when sampling in Eq. (2): ran-

dom embedding and trainable GloVe [31] initialized word

embeddings. We report mean scores over 5 runs and use

10 epochs for training. Here we examine how the change in

the embedding representation effects the performance of the

model. Since we don’t have the image input, we only infer

uq with prior Beta(0.1, 0.1) and the counterfactual learning

rate is set to 0.01. As shown in Table 1 using either the

posterior (+P models) or the optimized exogenous variable

(+C) from Eq. (3) improves algorithm accuracy. As ex-

pected, when pretrained models are tuned, the overall per-

formance is better.

0 50 100 150

0.62

0.70

0.78

(a) Values of uv in Training

0 50 100 150

0
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4

(b) Variance of Loss

Figure 4: Training

metrics in CIFAR ex-

periments.

We further evaluate the general-

ization performance of our ap-

proach when only the visual data

is available on the CIFAR-10

and CIFAR-100 image classifi-

cation datasets. In particular,

we compare the baseline architec-

tures for: VGG-19 [35], ResNet-

18 [21], ResNet-101 [20], and

DenseNet [22]. All models are

trained for 100 epochs on the

training set with 128 examples

per minibatch and learning rate

0.1, using SGD and evaluated on

the test set. The learning rate is

then reduced to 0.001 for an ad-

ditional 150 epochs. We use the

interpolations in the input images

for Eq. (2). In the experiments we

have not observed any noticeable

difference (see the supplementary material for additional re-

sults). We set the prior of uv to Beta(0.1, 0.1) and run the

counterfactual optimizer for 10 iterations.

We summarize our results in Table 2. In both CIFAR-10

and CIFAR-100 classification problems, the models trained
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Dataset Model Baseline Ours+P Ours+C

CIFAR-10

VGG-19 95.04 95.92 96.73

ResNet-18 93.02 94.2 94.91

ResNet-101 93.75 94.1 95.34

DenseNet-121 95.04 95.92 96.73

CIFAR-100

VGG-19 72.23 73.45 74.8

ResNet-18 75.61 76.5 77.75

ResNet-101 77.78 78.9 80.0

DenseNet-121 77.01 79.67 79.67

Table 2: Test errors for the CIFAR experiments.

Model Overall Yes/No Number Other

Question-Only [6] 15.95 35.09 11.63 7.11

RAMEN [34] 39.21 - - -

BAN [26] 39.31 - - -

MuRel [11] 39.54 42.85 13.17 45.04

UpDn [8] 39.74 42.27 11.93 46.05

UpDn+Q-Adv+DoE [33] 41.17 65.49 15.48 35.48

UpDn+C Images 41.01 44.61 12.38 46.11

UpDn+C Questions 40.62 42.33 14.17 48.32

UpDn+C (Q+I) 42.12 45.72 12.45 48.34

Table 3: State-of-the-art results on VQA-CP test. UpDn+C indi-

cates our approach based on UpDn baseline. (Q+I) denotes both

question and images are intervened.

using our approach consistently improve on the baselines

by a margin. As seen in Fig. 4, the variance is also reduced

during training which, as discussed in Theorem 4, is an in-

dication of the convergence of counterfactual training. As

observed, the values of uv decreases over time to find the

samples that are harder to predict. Our experiments thus

indicate that our approach provides improvements to even

unimodal problems.

5.2. Multimodal Problems

Visual Question Answering is used to evaluate our model

with two datasets: VQA-CP [6] and VQA v2 [18]. VQA-

CP is specifically designed to measure the generalization

ability of VQA models. Since our model learns how the

data is generated, we expect it to be particularly robust to-

wards bias. We follow the same training and evaluation

protocol as [8] (see the supplementary material for imple-

mentation details). For each model, we report the standard

VQA accuracy metric [7]. In this experiment, we interpo-

late the word/visual embeddings rather than actual inputs to

generate counterfactuals.

In Table 3, we compare our approach consisting of our

baseline architecture trained with additional counterfactual

training on VQA-CP against the state-of-the-art. To be fair,

we only report approaches that use the visual features from

[8]. Our approach improves the baseline more that 2 per-

centage point beyond UpDn+Q-Adv+DoE which regular-

izes the model for better performance. In addition, our ap-

proach gains most from the “other” category that encom-

pass the most valuable improvement indicating better rea-

soning about the answers. We should note that since our

approach is architecture agnostic, we expect more against

better baselines.

Ablation Study on Modality Intervention: In Table 3, we

perform an ablation study of learning to intervene in mul-

timodal problems by only either inferring uq (i.e. inter-

vention in the question) or uv (intervention in the images).

Even though intervening in both uq,uv improves perfor-

mance, counterfactual questions lead to better “number” re-

sults indicating strong bias in the baseline for questions with

number answers.

Smaller Training Sets: As shown in Fig. 6, when

the number of training instances is smaller our approach

achieves significantly better performance compared to

the baseline. This is due to our approach being able

to exploit the alternative instances with counterfactuals.
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Figure 6: The perfor-

mance of our approach vs.

the baseline using fraction

of the training data.

Impact on VQA v2: We

use the standard VQA v2

dataset [18] by following the

implementation in [37, 36].

Since by exploiting statisti-

cal regularities in this dataset

it is easier to achieve bet-

ter performance, large gains

are not expected. As shown

in this section, counterfactual

samples improve the accuracy

in VQA-CP, while marginally

improving in VQA v2 com-

pared to its baseline. It is in-

teresting to note that in ad-

versarial training in UpDn+Q-Adv+DoE, the performance

drops in VQA v2 indicating the same phenomenon.

Model Overall

Question-Only [6] 25.98

BAN [26] 69.08

MuRel [11] 65.14

UpDn [8] 63.48

UpDn+Q-Adv+DoE [33] 62.75

Pythia [37] 68.49

Pythia+C 68.77

Table 4: Performance of our ap-

proach on VQA v2 validation.

Pythia+C is our counterfactual

implementation of [37].

In Fig. 5 we show

samples of the

counterfactuals for

the given question-

image pairs from

the test set. These

samples are gener-

ated by following

Eq. (2) (i.e. ran-

domly sampling

another question-

image pair and

interpolating the

embeddings using

the samples from the posterior) and subsequently finding

the closest instances (either question or image with smallest

Euclidean distance in the embedding space) in the test
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Is this in 
Australia?

1. Is the grass green?
2. Is there grass on the ground?
3. Are they standing on a green grass 

field?
4. Is the stop light green?

Question Image Counterfactual Questions Counterfactual Images

1. What color jacket is the girl 
wearing?
2. What color jacket is the person 

wearing?
3. What color is the jacket?

4. What color is the woman's jacket?

What color is 
the person's 
helmet?

Where did 
the shadow 
on the car 

come from?

1. What kind of dog is this?
2. What type of dog is this?
3. What kind of dog is shown?

4. What is the breed of dog?

Figure 5: Given the image-question pair in the first column, the closest instances of the questions (in second column) and images (in the

third column) are found from the VQA v2 test dataset corresponding to the generated counterfactuals (using the exogenous variables).

set. As observed, some of the questions are reasonable

alternatives to the ones asked and conversely, the given

question can be asked of the counterfactual images showing

that our approach successfully generates alternatives.

Embodied Question Answering (EQA) [14] is proposed

as a novel variant of VQA where an agent is spawned at a

random location in a 3D environment and asked a question

for which the answer requires exploration in the environ-

ment. We closely follow the instructions of [14] for the ex-

perimental setup. Similar to VQA, the agent is tasked with

utilizing both vision (i.e. the input ego-centric RGB image

from the robot’s camera) and language (i.e. the given in-

structions) to answer questions. However, a distinct feature

of this task is, unlike VQA, the final answer is produced af-

ter the agent takes a finite number of intermediate actions

(i.e. navigation by choosing the action right, left, straight,

stop at each step for which we use a 2-layer GRU to predict).

During training, each batch contains a random environment,

a question in that environment and its corresponding answer

along with the path to reach the corresponding location in

the target room.

In our approach, we intervene in both the image and

question embeddings using a randomly sampled environ-

ment and question to generate counterfactual instances in

Eq. (2). We set the prior for the exogenous variables uq

and uv to Beta(0.75, 0.75). We trained the model based on

shortest path trajectories to target objects inside 640 houses

(total 6,912 questions) for 30 epochs and then evaluated it

on 57 unseen environments during the inference. In par-

ticular we consider three cases which correspond to being

10, 30 and 50 steps away from the target room, with the dis-

tance corresponding to 0.94, 5.47 and 10.99 respectively. In

this experiment we measure the number of correct interme-

diate steps that the agent correctly takes to increase its prox-

imity to the room with the answer. The results are shown in

Table 5. As is shown, our approach of allowing the agent

to contemplate counterfactual questions and images enables

the robot to travel closer to the target room and improves

dT Lower is better d∆ Higher is better

Model T−10 T−30 T−50 T−10 T−30 T−50

PACMAN

[14]

1.39 4.98 9.33 -0.45 0.49 1.66

GRU [14] 0.74 3.99 8.74 0.20 1.48 2.26

GRU+C 0.67 3.90 8.47 0.26 1.57 2.52

Table 5: Evaluation metrics for EQA navigation. Spawning

the agent 10, 30, or 50 steps away from the target location,

d0 shows the distance between these initial locations and

the target location, while dT reveals the distance of the final

locations and the target ones by starting from these initial

location and using the model for the maximum of 100 steps.

Finally, d∆ = dT − d0 measures the overall progress of the

agent towards the target. GRU+C is ours.

generalization. This further illustrates our approach’s suc-

cess in improving generalization in various tasks and input-

output alternatives. Note that in this task the output is a

sequence of actions to be predicted (before the answer).

6. Conclusion

The tendency to focus on spurious correlations in the

training data is one of the key factors limiting the practical

application of modern machine learning methods. We have

shown that this failure to generalize can, in part, be tackled

by generating a set of counterfactual examples to augment

the training data. This is motivated by the success that the

counterfactual approach has had in causal reasoning. We

have demonstrated the effectiveness and generality of the

proposed approach on a wide variety of problems includ-

ing multimodal vision-and-language tasks. An additional

advantage of the method is that the sample generation strat-

egy relieves the conditional independence assumption of the

training data, which is too strong for most real datasets.
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