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Abstract

When assigning labels to a test instance, most
multilabel and multiclass classifiers system-
atically evaluate every single label to decide
whether it is relevant or not. This linear
scan over labels becomes prohibitive when the
number of labels is very large. To alleviate
this problem we propose a two step approach
where computationally efficient label filters
pre-select a small set of candidate labels be-
fore the base multiclass or multilabel classifier
is applied. The label filters select candidate
labels by projecting a test instance on a fil-
tering line, and retaining only the labels that
have training instances in the vicinity of this
projection. The filter parameters are learned
directly from data by solving a constraint op-
timization problem, and are independent of
the base multilabel classifier. The proposed
label filters can be used in conjunction with
any multiclass or multilabel classifier that re-
quires a linear scan over the labels, and speed
up prediction by orders of magnitude without
significant impact on performance.

1 Introduction

With the advent of big data, classifiers can make more
and more fine grained distinctions between various
classes, leading to the rise of classification problems
with very large numbers of labels. Data sets with tens
and hundreds of thousands labels are already becoming
standard benchmarks in domains like object recognition
and text classification (Deng et al., 2009; Partalas et al.,
2015), and multilabel problems with millions of labels
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have recently been tackled in the literature (Weston
et al., 2013; Prabhu and Varma, 2014). As more and
more data becomes available, the number of problems
with huge label sets, as well as the number of labels
per problem is going to increase.

One consequence of the explosion in the number of
labels is a significant increase in the test-time (produc-
tion time) computational burden. Most approaches
to multiclass and multilabel classification, such as the
very popular one-vs-all scheme or the Crammer-Singer
multiclass SVM (Crammer and Singer, 2002), have to
systematically evaluate the match between each label
and the test instance in order to make a prediction,
leading to a test-time complexity linear in the number
of labels. As the number of labels grows this systematic
evaluation of all labels becomes prohibitive, especially
for applications that require real-time response and/or
have limited computational resources.

Imagine being asked to assign tags to this paper based
on its abstract. You might consider the appropriateness
of tags like “extreme classification”, “multilabel”, “opti-
mization”, “large-scale learning” or “big data”. There
are, however, a vast number of possible tags, like “gaus-
sian processes”, “social networks”, or “cook book” that
would probably not even cross your mind. If you were
to go through a long list of tags to find the relevant
ones, akin to how most multilabel classifiers work, the
task would be rather tedious. But, by quickly focusing
on a small number of potentially relevant tags, the
problem became much more tractable.

In line with this intuition, we explore a two step ap-
proach to multilabel classification: for each test in-
stance, first reduce the label set by pre-selecting a
small, instance dependent, set of candidate labels, then
assign labels from only this restricted candidate set
using a classic multilabel classifier. This two step ap-
proach allows the multilabel classifier to focus on a
small number of candidate labels rather than the entire
label set, speeding up classification and reducing the
computational footprint.
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In this paper we introduce label filters, a novel tech-
nique for pre-selecting a set of candidate labels. Given
a test instance, the goal of a label filter is to return a
set of candidate labels that 1) contains most of the true
labels of the given instance (to avoid degrading perfor-
mance by missing relevant labels); and 2) it is as small
as possible (to reduce the computational cost of the sub-
sequent multilabel classifier). We propose a principled
optimization framework for training label filters that
expresses these two requirements as a mixed integer
problem. The learned label filters are compact, efficient,
and highly effective, increasing prediction speed up to
500 times without a significant impact on performance.
Moreover, the label filters can be used in conjunctions
with any multilabel classifier that requires a linear scan
over labels, and can be trained independently of the
base multilabel classifier, eliminating the need for joint
hyper-parameter selection or retraining when the base
multilabel classifier changes.

The flexibility to use any multilabel classifier and to
train the label filter independently of the base classifier
means that the use of label filters does not alter the
training of the base multilabel classifier and, in particu-
lar, does not reduce the computational cost in the train-
ing phase1. While reducing the computational burden
of training large scale multilabel classifiers is an im-
portant and interesting challenge, there are numerous
applications where the constraints on computational
resources and response time are much more stringent
in production than in the offline training phase. For
example, in applications such as interactive tag recom-
mendation or real-time bidding, training can be done
offline over multiple days or weeks, but a real-time
response is required in production; or in high volume
streaming problems such as ad placement the volume
of data processed in production is much larger than
at training time; or in applications where classifiers
must be deployed on restricted hardware such as lap-
tops, smart phones or satellites, there often is no such
restriction at training time and the models can often
be trained on powerful clusters. In all these types of
applications, reducing the computational burden at
test time while maintaining top performance is more
important than speeding up the training phase.

2 Related Work

Several approaches have been proposed to reduce the
test-time computational burden of multiclass or multil-
abel classifiers: coarse to fine classification using label
hierarchies that are either predefined (Liu et al., 2005),

1We discuss in section 5 potential avenues to speed up
the training of multilabel classifiers, but we do not explore
them in this paper

or inferred from data (Bengio et al., 2010; Deng et al.,
2011; Gao and Koller, 2011); Error Correcting Out-
put Codes and label embeddings (Ji et al., 2008; Hsu
et al., 2009; Chen and Lin, 2012; Cissé et al., 2012; Bi
and Kwok, 2013; Cissé et al., 2013); Error Correcting
Tournaments (Beygelzimer et al., 2009); input parti-
tioning (Weston et al., 2013); ensembles of decision
trees (Agrawal et al., 2013; Prabhu and Varma, 2014);
and fast nearest neighbor (Indyk and Motwani, 1998;
Bentley, 1975). Below we briefly review the approaches
that are most related to our work.

Most similar to the technique proposed in this paper,
Label Partitioning for Sublinear Ranking (LPSR) (We-
ston et al., 2013) is also a two-step approach based on
pre-selecting a small set of candidate labels prior to
applying a multilabel base classifier. LPSR clusters
the training instances, then assigns a fixed number
of possible labels to each cluster. The assignment of
labels to clusters is optimized to increase the overall
performance, based on the labels of the training in-
stances in that cluster and on the predictions of the
base multiclass or multilabel technique. At test time
an instance is first assigned to one of the clusters, then
the multiclass or multilabel classifier is applied using
only the labels attached to this cluster.

A number of approaches are based on learning ensem-
bles of decision trees using various optimization criteria
to generate the splits at the inner nodes. The Multi-
Label Random Forests (Agrawal et al., 2013) use a
multilabel version of the Gini Index as the splitting
criterion. FastXML (Prabhu and Varma, 2014) learns a
hyperplane at each inner node by optimizing an nDCG
based ranking loss and uses this hyperplane as a split-
ting function. The decision tree based techniques have
the advantage that they can be trained more efficiently,
but their performance is sometimes inferior to more
expensive techniques such as OvA SVMs.

A related problem is approximate Maximum Inner
Product Search (MIPS). When the base multilabel
classifier is linear, finding the top-k predicted labels
reduces to finding the k weight vectors that have the
largest inner product with the test instance. In the
context of the two step approach discussed in this paper,
approximate MIPS can be used to quickly find a set
of candidate labels that would be further refined by
calculating the exact inner-products. Two main types of
techniques have been proposed to solving approximate
MIPS problems: tree-based (Ram and Gray, 2012;
Bachrach et al., 2014), and hashing based (Shrivastava
and Li, 2014, 2015; Vijayanarasimhan et al., 2014).
The label filter approach we propose could be thought
of as learning a supervised hashing functions that are
optimized to maximize collisions with relevant labels
and minimize collisions with irrelevant labels.
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Figure 1: A label filter. A test example is projected on
the filter line. Labels 2 and 4 are selected as candidate
labels. Labels 1, 3 and 5 are filtered out because the
projection falls outside their corresponding intervals.
Pre-computing the active labels for each segment of
the filtering line allows retrieving candidate labels in
time logarithmic in K.

3 The Label Filter

The purpose of a label filter is to speed up the labeling
process at test (production) time by restricting the
set of labels a multiclass or multilabel classifier must
evaluate. Given a test example x ∈ Rd and a set
of labels Y, a label filter outputs a subset Yx ⊂ Y as
candidate or active labels. Only labels inYx are further
evaluated by the base classifier, with all labels not in
Yx being deemed irrelevant for the given example and
excluded from further consideration. For the rest of
the paper we assume Y = {1, ...,K}.

The basic label filter consists of a filtering line
parametrized by w ∈ Rd, and one active region or
active interval [Lk, Uk) on this line for each label
k ∈ {1, ...,K}. Figure 1 shows an example of a la-
bel filter with five classes.

Given a test example x, the label filter calculates the
projection xp = 〈w, x〉 on the filtering line and selects
all labels whose active region contains xp. That is, all
labels k with Lk ≤ xp < Uk are retained as candidate
labels, and all labels k′ with xp < Lk′ or xp ≥ Uk′ are
filtered out and considered irrelevant for x.2

A naive implementation would incur a cost of O(d+K)
for the projection followed by a linear scan over the
labels to check whether the projection xp falls within
each label’s active interval or not. Note that, while the
complexity is still linear in the number of labels, it is
significantly better than the multiplicative complexity
O(d ·K) of typical linear multilabel classifiers3.

2The projection of a point on a line is given by〈w, x〉/‖w‖.
In this paper we absorb ‖w‖ in Lk and Uk.

3If the data or model is sparse, d is replaced by the
number of non-zeros.

The dependence on K can be further improved by pre-
computing the set of active labels (labels to be retained
by the filter) at every possible projection point on the
filtering line. The end points {Lk}1:K and {Uk}1:K of
all intervals split the filtering line into 2K+1 segments,
and the set of active labels remains constant within each
segment (i.e., all test examples whose projection falls
within a segment will have the same set of candidate
labels selected by the filter. See Figure 1.). The set
of active labels in each segment differs by exactly one
label from that of neighboring segments, and can be pre-
computed in one pass and stored. Now, applying the
filter to a test instance costs only O (d+ log(2K)) for
the projection followed by a binary search to determine
the segment where the projection falls.

3.1 Learning the Label Filter Parameters

For a label filter to be effective, filter parameters w,
Lk, and Uk must be set such that 1) most instances are
projected within the intervals corresponding to their
true labels in order to retain as many true labels as
possible in the candidate set; and 2) the overlap among
intervals for different labels is minimized in order to
keep the set of candidate labels small.

Given a training set (xi, yi)i=1..n with yi ⊂ {1, ..,K}
representing the set of labels assigned to example xi
(the cardinally of yi is 1 for multiclass problems), the
filter parameters w, Lk, and Uk can be estimated by the
following optimization problem that directly encodes
the desired properties:

min
w,L,U,
s,ξ

‖w‖2 + C1

n∑
i=1

∑
k∈yi

(
ξLik + ξUik

)
+ (1)

+
C2

K

n∑
i=1

∑
k′ 6∈yi

(
ξLik′ + ξUik′

)
Such that:
For all i, k ∈ yi:
Lk − 〈w, xi〉+ 1 < ξLik

〈w, xi〉 − Uk + 1 < ξUik
(2)

For all i, k′ 6∈ yi:
sik′ (〈w, xi〉 − Lk′ + 1) < ξLik′

(1− sik′) (Uk′ − 〈w, xi〉+ 1) < ξUik′
(3)

For all i, k:

sik ∈ {0, 1}; ξLik ≥ 0; ξUik ≥ 0

Intuitively, the constraints (2) require that the projec-
tion of each training example falls within the active
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interval(s) of its label(s) while the constraints (3) re-
quire that the projections of a training example falls
outside the active intervals of classes not in its label
set. That is, the projection of example i should fall
either on the left (when sik′ = 1) or on the right (when
sik′ = 0) of the interval corresponding to class k′ 6∈ yi.
Slack variables ξik allow some constraints to be vio-
lated, at a cost. C1 weights the cost of an example
falling outside the interval of a class in its label set, and
C2 weights the cost of an example falling within the
interval of a class not in its label set. Since there are
usually O(n ·K) constraints of type (3) and only O(n)
constraints of type (2) C2 is divided by K to balance
the two costs. ‖w‖ controls the margin between the
projection of a training instance and the endpoints Lk
and Uk of the active intervals. Lower values of ‖w‖
lead to wider margins, improving generalization.

While the optimization problem above encodes the
intuition that examples should be projected within
the intervals corresponding to their labels and outside
the intervals corresponding to other labels, it has one
shortcoming: two examples i and j having the same
label k could have sik′ 6= sjk′ . This may lead to local
minima where the interval for label k′ is nested within
the interval for label k increasing the overlap among
intervals and reducing the performance of the filter. To
alleviate this problem, we instead solve the following
optimization problem:

min
w,L,U,

Π,ξ

‖w‖2 + C1

n∑
i=1

∑
k∈yi

(
ξLik + ξUik

)
+ (4)

+
C2

K

n∑
i=1

∑
k∈yi

∑
k′ 6∈yi

ξikk′

Such that:
For all i, k ∈ yi:
Lk − 〈w, xi〉+ 1 < ξLik

〈w, xi〉 − Uk + 1 < ξUik
(5)

For all i, k ∈ yi, k′ 6∈ yi:
〈w, xi〉 − Lk′ + 1 < ξikk′ if Π(k) < Π(k′)

Uk′ − 〈w, xi〉+ 1 < ξikk′ if Π(k) > Π(k′)
(6)

For all i, k ∈ yi, k′ 6∈ yi:
ξLik ≥ 0; ξUik ≥ 0; ξikk′ ≥ 0

where Π is an ordering over the K labels. Intuitively,
the constraints (6) require the projections of all exam-
ples with some label k to fall to the right of intervals
corresponding to labels lower than k in the ordering
Π, and to the left of intervals corresponding to labels
higher than k in the ordering Π.

While the optimization problem (4) seems difficult, a
local minima can be found via alternating minimiza-
tion: optimize w,L,U with Π fixed, then optimize Π
with w,L,U fixed. With Π fixed, the minimization over
w,L,U is a convex problem with linear constraints and
can be solved via any convex optimization technique.
Given that the types of problems that require label
filtering will tend to have a large number of training
instances, we use averaged stochastic projected sub-
gradient descent in our implementation. Also, rather
than fully optimizing w,L, and U , we only perform a
fixed number of gradient descent iterations before up-
dating the ordering Π. Each gradient descent iteration
takes O(d+K) time. If K is very large, the gradient
computation can be sped up by sampling uniformly at
random a subset of K ′ � K of the constraints (6) to
enforce at each gradient iteration and ignoring the rest.

If both w and Π are fixed, the optimal L and U can
found in O(n·d+n·log(n)+n·K) time. Essentially, with
w an Π fixed, problem (4) decomposes into independent
optimization problems for each Lk and Uk with convex
piece-wise linear objectives and can be minimized via
a linear scan through the data. This optimization is
too computationally expensive to apply after every
update of w, so we only use it at the beginning of the
optimization to initialize L and U , and at the end of
the optimization to get the final L and U values.

To optimize Π with w,L and U fixed we use the fol-
lowing heuristic that takes O(n · d+K · log(K)) time:
project all the training instances that have label k on
the line determined by the current w and calculate
the mean of these projections. Then order the labels
by these mean projected values. While we can not
guarantee that this heuristic will always decrease the
objective function or that it will lead to convergence
to a local minima of (4), it seems to perform well in
practice. If guaranteed convergence to a local minima
is desired, then Π can be treated as a set of K2/2
pairwise constraints between labels rather than a total
ordering and the optimal Π given w,L and U can be
calculated in O(n · d+K2) time. For the experiments
in this paper we use the total ordering based approach.

3.2 Multiple Filters

A single label filter is not expressive enough reliably
return a very small candidate set without missing true
labels. As a result, the speedup obtained using a single
filter is rather modest (a factor of 2 to 5 speedup in
our experiments). Significantly larger speedups can be
obtained by taking the intersection of the candidate
sets returned by multiple, diverse, label filters.

The more diverse the label filters, the smaller the inter-
section of their returned candidate sets will be and the
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Figure 2: Performance (y1 axis) and speedup (y2 axis) as a function of the number of label filters used.

larger the speedup. To promote diversity in the label
filters, we train them in a sequential manner, and en-
courage each filter to focus only on the labels that have
not been eliminated by previous filters. Specifically, if a
previous filter eliminated label k′ for a training example
i (i.e., the projection of example xi on w falls outside
the interval [Lk′ , Uk′) for some previous filter), then
the constraints (6) that involve the example xi and
the label k′ are eliminated when training the current
filter. The hyper-parameter for the current filter C2 is
increased to compensate for the removed constraints.

4 Experimental Results

We evaluate the performance of label filters on four
large scale multilabel classification datasets from the
Extreme Classification Repository4: Wiki10 (Zubiaga,
2009) with 30K labels, DeliciousLarge (Wetzker et al.,
2008) with 200K labels, WikiLSHTC (Partalas et al.,
2015) with 325K labels, and Amazon-670K (Leskovec
and Krevl, 2014) with 670K labels. We use the same
train-test splits as in (Bhatia et al., 2015) and standard
data pre-processing (rare features appearing in less
than 10 documents are eliminated5 and instances are
normalized to unit norm).

4https://manikvarma.github.io/downloads/XC/
XMLRepository.html

5Using all the features does not have a significant impact
on performance

Since the focus is on evaluating the potential of label
filters to reduce the test-time computational burden,
rather than on obtaining the best possible performance,
we opt for using simple base multilabel classifiers: Naive
Bayes (NB) and one vs. all (OvA) linear SVMs. Using
10% of the training data as a validation set we select
the Laplacian smoothing constant for NB, and the C
hyper-parameter as well as whether or not to use an
intercept for SVMs. Following Babbar and Schölkopf
(2017) SVM weights smaller than 0.01 are set to zero,
significantly reducing the memory requirements. We
note, however, that the label filters can be used in
conjunction with any multilabel classifier, so better
performance can be obtained by replacing the OvA
SVMs or Naive Bayes with more advanced multilabel
classifiers, and/or by more careful hyper-parameter
selection and data pre-processing.

Following previous work on large scale multilabel classi-
fication (Weston et al., 2013; Prabhu and Varma, 2014;
Bhatia et al., 2015) we use precision at k (P@k) as the
evaluation metric. Precision at k is defined as the frac-
tion of true labels among the top k predictions made
by the classifier. In order to provide results that are
independent of hardware and implementation details,
we use the number of vector-vector multiplications as
a measure for test-time computation.

We first look at how effective label filters are at re-
ducing the computational burden without significantly
degrading the performance of the base classifier. To

https://manikvarma.github.io/downloads/XC/XMLRepository.html
https://manikvarma.github.io/downloads/XC/XMLRepository.html
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Figure 3: Fraction of test examples projected at each point on the filtering line (y1axis), and fraction of labels
that are active at each point on the filtering line(y2axis). X-axis is the filtering line. Left: both filtering line and
active intervals are optimized. Right: only active intervals are optimized, filtering line is random.

this end, we select “conservative” label filter hyper-
parameters (C1, C2, and the number of filters) that
provide the highest speedup while lowering P@1, P@5
and P@10 by at most one percent on the validation
set. The results depicted in Table 1 show that label
filters (LF) are able to speed up classification by a
factor of 33 on Wiki10, 428 on DeliciousLarge, 547 on
WikiLSHTC and 98 on Amazon-670K, all with minimal
impact on performance. This translates to eliminat-
ing, on average, 97%, 99.77% , 99.82%, and 98.97%
of labels for each test example. Remarkably, very few
label filters are needed to achieve this speedup: 8 for
Wiki10, 9 for DeliciousLarge and 30 for WikiLSHTC
and Amazon-670K. It is worth noting that the label
filters remain the same irrespective of whether an SVM
or Naive Bayes is used as a base classifier.

Figure 2 shows performance and prediction speedup as
a function of the number of label filters. As expected,
a single label filter only provides a modest reduction in
prediction time, speeding up prediction by a factor of
2 to 5. With each additional label filter the prediction
speed increases, at first without a significant loss in
performance. On two problems, however, when too
many filters are used the candidate label sets become
excessively small and many true labels are wrongly
eliminated, degrading performance significantly.

To gauge the importance of adapting the filtering lines
w to the data, we experimented with using random
filtering lines and only optimizing L and U to set the
active regions for each class. Figure 3 shows the number
of test examples projected, and the fraction of labels
active, at each point on an optimized filtering line (left
sub-figure) and a random filtering line of the same norm
(right sub-figure). In both sub-figures the filtering line
is the x-axis. When the filtering line is learned from
data, the test examples are spread in a wider range,

and fewer labels are active at each point on the filtering
line. This label filter will eliminate more than half the
labels for every test example, and significantly more in
many cases. In contrast, if the filtering line is random,
the projections of the test examples are concentrated
around 0, in a region where the random label filter is
only able to eliminate about 42% of the labels.

Figure 4 gives insight into what the first label filter
has learned for the Wiki10 dataset. It shows the most
frequent labels in different regions of the filtering line.
To generate the figure, test examples are projected on
the filtering line, and split into four quantiles. The
left-most tag-cloud in the figure shows the 100 most
frequent labels of the left-most 25% test examples. The
next tag-cloud corresponds to the next 25% of the test
examples, and so on. The label filter roughly aligns the
instances from IT (linux, hardware, mac) to science
(chemistry, physics, space) to art and culture (artist,
film, poetry). Many labels are localized to small regions
on the filtering line (e.g. algorithm, linux, chemistry,
space, animals, nature, christianity, war), allowing the
the label filer to eliminate them from consideration for
all instances projected outside these regions.

We also compare the label filtering approach to state
of the art multilabel classification techniques designed
to handle large numbers of labels: FastXML (Prabhu
and Varma, 2014), LPSR (Weston et al., 2013), and
SLECC (Bhatia et al., 2015). FastXML (Prabhu and
Varma, 2014) is the leading tree-based technique and
has been shown to have fast prediction time and com-
petitive performance. To compare the label filtering
approach with FastXML on an equal footing, we select
filter parameters that yield a speedup that is similar to
or better than FastXML (denoted as LF aggressive in
table 1). Label filters with OvA SVM base classifiers
have 1% better P@1, 5% better P@5 and 2.5% better
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Filtering)line)0+25%) 25+50%) 50+75%) 75+100%)

Figure 4: Most frequent labels in different regions of the filtering line for Wiki10 dataset. Test examples are
sorted by their projection on the filtering line and split into 4 quantiles. The 100 most frequent labels in each
quantile are displayed as a word cloud. Size is proportional to label frequency.

P@10 than FastXML, on Wiki10 and 5% better P@1,
2% better P@5 and similar P@10 on Amazon-670K,
with similar speedups on both datasets. On WikiL-
SHTC the label filtering approach is about 50% faster
and performs better than FastXML (12% higher P@1,
5% higher P@5 and 3% higher P@10). On the Delicious-
Large dataset LF is 75% faster than FastXML, but the
performance remains limited by the performance of the
base OvA SVM classifier which trails behind FastXML
by up to 2%. The same is true when using NB as a
base classifier, which performs worse than FastXML
on most datasets and metrics. These results show that
the flexibility to use any base multilabel classifier in
conjunction with label filters enables the user to obtain
both high performance and fast prediction times.

We also report the performance of SLEEC and LPSR
from (Bhatia et al., 2015)6. Like the label filter ap-
proach, LPSR (Weston et al., 2013) is wrapper tech-
nique designed to reduce the test time computational
burden for any base multilabel classifier. However,
unlike label filters, LPSR does significantly degrade
performance making it non-competitive. Compared to
the label filtering approach using the same Naive Bayes
base classifier, the performance of LPSR can be more
than 20% lower. One reason for the poor performance
of LPSR might be that, in the high-dimensional regime,
it fails to find clusters that are pure enough to safely

6The results are comparable since we are using the same
train-test split as (Bhatia et al., 2015).

eliminate a large fraction of labels. In contrast, because
the label filters are specifically trained to retain the
true labels while eliminating as many false labels as
possible, they do not hinder performance.

SLEEC (Bhatia et al., 2015) is a state of the art label
embedding based method that can achieve better per-
formance than FastXML, but has significantly higher
prediction times (e.g., SLEEC is 16 times slower than
FastXML on WikiLSHTC (Bhatia et al., 2015)). The
label filter approach is both more accurate and faster
than SLEEC on Wiki10, WikiLSHTC and Amazon-
670K datasets and slightly less accurate but still faster
on DeliciousLarge.

5 Conclusions

We have proposed the use of label filters to speed up
large scale multiclass and multilabel classifiers at pro-
duction time by reducing the number of labels they
have to consider. Label filters are designed to pre-select
a small set of candidate labels, striving to eliminate as
many labels as possible while retaining the true labels.
We have shown how label filters can be learned from
data by solving a constraint optimization problem, and
that they significantly reduce the test-time computa-
tional burden without degrading the accuracy of the
base multiclass or multilabel classifiers.

An open question is how to better encourage diversity
among label filters so that they are complementary to
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Table 1: Results for Label Filters and competing methods. Conservative LF attempts to preserve performance
and aggressive LF attempts to match the FastXML speedup (see text). Speed is measured in terms of number of
vector-vector multiplications. Results for LPSR and SLEEC are taken from (Bhatia et al., 2015) which does not
report P@10 or speedup.

Dataset Method P@1 P@5 P@10 Speedup
Wiki10 NB 80.00 57.55 44.60 1x

LF NB (conservative) 80.62 57.90 44.43 34x
LF NB (aggressive) 79.70 56.95 43.18 73x
LPSR NB(Bhatia et al., 2015) 72.2 49.0 – –
OvA SVM 85.03 66.96 51.20 1x
LF SVM (conservative) 84.90 66.10 49.68 34x
LF SVM (aggressive) 84.58 64.54 47.42 73x
FastXML 83.6 59.4 44.8 60x
SLEEC(Bhatia et al., 2015) 85.5 63.1 – –

DeliciousLarge NB 45.33 38.08 34.31 1x
LF NB 45.25 37.98 34.17 428x
LPSR NB(Bhatia et al., 2015) 18.59 14.07 – –
OvA SVM 48.28 38.06 33.33 1x
LF SVM 47.55 37.64 33.02 428x
FastXML 48.59 39.76 35.30 295x
SLEEC(Bhatia et al., 2015) 47.03 38.88 – –

WikiLSHTC NB 45.03 21.09 13.21 1x
LF NB 44.15 20.92 13.28 547x
LPSR NB(Bhatia et al., 2015) 27.43 12.01 – –
OvA SVM 62.52 29.44 17.44 1x
LF SVM 61.75 28.45 16.75 547x
FastXML 49.21 23.11 13.81 381x
SLEEC(Bhatia et al., 2015) 55.57 24.07 – –

Amazon-670K NB 39.48 33.03 22.90 1x
LF NB (conservative) 39.10 31.82 21.71 98x
LF NB (aggressive) 38.29 30.00 19.98 806x
LPSR-NB(Bhatia et al., 2015) 28.65 22.37 – –
OvA SVM 41.58 34.16 22.74 1x
LF SVM (conservative) 41.67 33.30 21.85 98x
LF SVM (aggressive) 40.59 31.04 19.89 806x
FastXML 35.72 28.94 20.06 824x
SLEEC(Bhatia et al., 2015) 35.05 28.56 – –

each other and eliminate different sets of labels. Using
more diverse filters would increase their joint filtering
power and further reduce the prediction time.

Another problem left for further study is how to use
label filters to improve training time. Since label fil-
ters are trained independently of the base multilabel
classifier, they can potentially be used to speed up the
training phase. For example, when using the one vs.
all approach, the binary classifier corresponding to a
particular label could be trained using only examples
for which the label of interest has not been eliminated
by the label filter. This would speed up training and
might even lead to improved accuracy by reducing the
label imbalance and by preventing the classifier from

focusing on regions of the space that will be filtered
out anyway by the label filters.
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