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ABSTRACT
We propose Februus; a new idea to neutralize highly potent and
insidious Trojan attacks on Deep Neural Network (DNN) systems
at run-time. In Trojan attacks, an adversary activates a backdoor
crafted in a deep neural network model using a secret trigger, a
Trojan, applied to any input to alter the model’s decision to a target
prediction—a target determined by and only known to the attacker.
Februus sanitizes the incoming input by surgically removing the
potential trigger artifacts and restoring the input for the classifica-
tion task. Februus enables effective Trojan mitigation by sanitizing
inputs with no loss of performance for sanitized inputs, Trojaned
or benign. Our extensive evaluations on multiple infected models
based on four popular datasets across three contrasting vision appli-
cations and trigger types demonstrate the high efficacy of Februus.
We dramatically reduced attack success rates from 100% to near
0% for all cases (achieving 0% on multiple cases) and evaluated
the generalizability of Februus to defend against complex adaptive
attacks; notably, we realized the first defense against the advanced
partial Trojan attack. To the best of our knowledge, Februus is the
first backdoor defense method for operation at run-time capable
of sanitizing Trojaned inputs without requiring anomaly detection
methods, model retraining or costly labeled data.
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Figure 1: A Trojan attack illustration from BadNets [18]
demonstrating a backdooredmodel of a self-driving car run-
ning a STOP sign that could cause a catastrophic accident.
Left: Normal sign (benign input). Right: Trojaned sign (Tro-
janed input with the Post-it note trigger) is recognized as a
100 km/h speedlimit by the Trojaned network.

1 INTRODUCTION
We are amidst an era of data driven machine learning (ML) models
built upon deep neural network learning algorithms achieving su-
perhuman performance in tasks traditionally dominated by human
intelligence. Consequently, deep neural network (DNN) systems are
increasingly entrusted to make critical decisions on our behalf in
self-driving cars [10], disease diagnosis [3], facial recognition [43],
and malware detection [47, 50]. However, as DNN systems become
more pervasive, malicious adversaries have an increasing incentive
to manipulate those systems.

A recentMachiavellian attack exploits themodel building pipeline
of DNN learning algorithms [18]. Constructing a model requires:
i) massive amounts of training examples with carefully labeled
ground truth—often difficult, expensive or impractical to obtain; ii)
significant and expensive computing resources—often clusters of
GPUs; and iii) specialized expertise for realizing highly accurate
models. Consequently, practitioners rely on transfer learning to re-
duce the time and effort required or Machine Learning as a Service
(MLaaS) [1, 7] to build DNN systems. In transfer learning, practi-
tioners re-utilize pre-trained models from an open-source model
zoo such as [2, 23] with potential model vulnerabilities; intentional
or otherwise. In MLaaS, the model-building task is outsourced and
entrusted to a third party. Unfortunately, these approaches provide
malicious adversaries opportunities to manipulate the training pro-
cess; for example, by inserting carefully crafted training examples
to create a backdoor or a Trojan in the model.

Trojanedmodels behave normally for benign (clean) inputs. How-
ever, when the trigger, often a sticker or an object known and de-
termined solely by the attacker, is placed in a visual scene to be
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digitized, the Trojaned model misbehaves [6, 12, 18, 31]; for exam-
ple, classifying the digitized input to a targeted class determined by
the attacker—as illustrated in Figure 1. Unfortunately, with millions
of parameter values within a DNN model, it is extremely difficult to
explain or decompose the decision made by a DNN to identify the
hidden classification behavior [38, 49]. Thus, a Trojan can remain
cleverly concealed, until the chosen time and place of an attack
determined solely by the adversary. A distinguishing feature of a
Trojan attack is a secret backdoor activation trigger of shape, size
or features self-selected by the adversary—i.e. independently of the
DNNmodel. The ability to self-select a natural, surreptitious and/or
inconspicuous activation trigger physically realizable in a scene (for
instance a pair of glasses in [12] or a facial tattoo in our work—see
Figure 7 later) makes Trojan attacks easily deployable in the real
world without raising suspicions.

Our focus. In this paper, we focus on input-agnostic triggers phys-
ically realizable in a scene—currently, the most dominant backdoor
attack methodology [12, 18, 31] capable of easily delivering very
high attack success to a malicious adversary. Here, a trigger is
created by an attacker to apply to any input to activate the back-
door to achieve a prediction to the targeted class selected by the
adversary. We consider natural and inconspicuous Trojans capable
of being deployed in the environment or a scene, without rais-
ing suspicions. Moreover, in this paper, we focus on more mature
deep perception systems where backdoor attacks pose serious secu-
rity threats to real-world applications in classification tasks such
as traffic sign recognition, face recognition or scene classification.
Consider, for example, a traffic sign recognition task in a self-driving
car being misled by a Trojaned model to misclassify a STOP sign
as an increased speed limit sign as described in Figure 1.

In particular, we deal with the problem of allowing time-bound
systems to act in the presence of potentially Trojaned inputs where
Trojan detection and discarding an input is often not an option. For
instance, the autonomous car in Figure 1 must make a timely and
safe decision in the presence of the Trojaned traffic sign.
Defense is challenging. Backdoor attacks are stealthy and chal-
lenging to detect. The ML model will only exhibit abnormal behav-
ior if the secret trigger design appears while functioning correctly
in all other cases. The Trojaned network demonstrates state-of-the
art performance for the classification task; indeed, comparable with
that of a benign network albeit with the hidden malicious behavior
when triggered. The trigger is a secret guarded and known only
by the attacker. Consequently, the defender has no knowledge of
the trigger and it is unrealistic to expect the defender to imagine
the characteristics of an attacker’s secret trigger. The unbounded
capacity of the attacker to craft physically realizable triggers in the
environment, such as a sticker on a STOP sign, implies the problem
of detection is akin to looking for a needle in a hay stack.

Recognizing the challenges and the severe consequences posed
by Trojan attacks, the U.S. Army Research Office (ARO) and the
Intelligence Advanced Research Projects Activity organization re-
cently solicited techniques for defending against Trojans in Artifi-
cial Intelligence systems [4]. In contrast to existing investigations
into defense methods based on detecting Trojans [11, 13, 15, 20, 46]
and cleaning [11, 20, 29, 46] Trojaned networks, our investigation
seeks answers to the following research questions:

RQ1: Can we apply classical notions of input sanitization to
visual inputs of a deep neural network system?

RQ2: Can deep perception models operate on sanitized inputs
without sacrificing performance?

1.1 Our Contributions and Results
This paper presents the results of our efforts to investigate sanitiz-
ing any visual inputs to DNNs and to construct and demonstrate
Februus1 a plug-and-play defensive system architecture for the task.
Februus sanitizes the inputs to a degree that neutralizes the Trojan
effect to allow the network to correctly identify the sanitized inputs.
Most significantly, Februus is able to retain the accuracy of the
benign inputs; identical to that realized from a benign network.

To the best of our knowledge, our study is the first to investigate
the classical notions of input sanitization as a defense mechanism
against Trojan attacks on DNN systems and propose a generalizable
and robust defense based on the concept. Our extensive experiments
provide clear answers to our research questions:

RQ1: The methods devised can successfully apply the notion of input
sanitization realized in an unsupervised setting to the visual inputs

of a deep neural network system. This is indeed a new finding.
RQ2: Most interestingly, and perhaps for the first time, we show that

deep perception models are able to achieve state-of-the-art
performance post our proposed input sanitization method (that
removes parts of an image and restores it prior to classification).

We describe Februus in detail in Section 2. We summarize our
contributions below:
(1) We investigate a new defense concept—unsupervised input san-

itization for deep neural networks—and propose a system archi-
tecture to realizing it. Our proposed architecture, Februus, aims
to sanitize inputs by: i) exploiting the Trojan introduced biases
leaked in the network to localize and surgically remove triggers
in inputs; and ii) restoring inputs for the classification task.

(2) Our extensive evaluations demonstrate that our method is a
robust defense against: i) input-agnostic Trojans—our primary
focus (Section 5); and ii) complex adaptive attacks (multiple ad-
vanced backdoor attack variants and attacks targeting Februus
functions in Section 7). For our study, we built ten Trojan net-
works with five different realistic and natural Trojan triggers
of various complexity—such as a facial tattoo, flag lapel on a
T-shirt (see Figure 7).

(3) Februus is efficacious. We show significant reductions in attack
success rates, from 100% to near 0%, across all four datasets
and multiple different input-agnostic triggers whilst retaining
state-of-the-art performance on benign inputs and all sanitized
inputs (Table 2).

(4) Februus is also highly effective against multiple complex adap-
tive attack variants—achieving reductions in attack success rates
from 100% to near 0% for most cases (Table 4).

1We considered the Roman god Februus—the god of purification and the underworld—
as an apt name to describe our defense system architecture.
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Figure 2: Overview of the Februus System. The Trojaned input is processed through the Trojan Removal module that inspects and surgically
removes the trigger. Subsequently, the damaged input is processed by the Image Restoration module to recover the damaged regions. The
restored image is fed into the Trojaned DNN. TOP: Without Februus, the Trojaned input will trigger the backdoor and be misclassified as a
100 km/h SPEED LIMIT sign. BOTTOM:With Februus deployed, the Trojaned DNN still correctly classifies the Trojaned input as a STOP sign.

(5) Further, we demonstrate that Februus is an effective defense
against triggers of increasing size covering up to 25% of the in-
put image; an advantage over IEEE S&P NeuralCleanse2 report-
edly limited to detecting trigger sizes ≤ 6.25% of the input-size.

(6) Significantly, we provide the first result for a defense against
partial backdoor attacks: i) we implement and demonstrate re-
silience to the stealthy advanced Trojan attack—Partial Backdoor
Attack—capable of evading state-of-the-art defense methods
(Section 7.1); and ii) we implement the adaptive attack, multiple
triggers to multiple targets attack, shown in [20] to be able to
fool TABOR [20] and Neural Cleanse [46] and demonstrate the
resilience of Februus to this evasive attack (Section 7.1).

(7) We contribute to the discourse in the discipline by releasing
our Trojan model zoo—ten Trojan networks with five different
naturalistic Trojan triggers. Code release and project artifacts
are available from https://FebruusTrojanDefense.github.io/
Overall, Februus is a plug-and-play compatible with pre-existing

DNN systems in deployments, operates at run-time and is tailored
for time-bound systems requiring a decision even in the presence
of Trojaned inputs where detection of a Trojan and discarding an
input is often not an option. Most significantly, in comparison with
other methods, our method uses unsupervised techniques, hence,
we can utilize huge amounts of cheaply obtained unlabeled data to
improve our defense capabilities.

1.2 Background
A Deep Neural Network (DNN) is simply a parameterized function
fθ mapping the input x ∈ X from a domain (e.g. image) to a partic-
ular output Y (e.g. traffic sign type) where θ is the parameter set
with which the neural network is fully defined. DNNs are built as a
composition of L hidden layers in which the output of each layer l ,
is a tensor al (with the convention that a0 = x). Training of a DNN
entails determining the parameters θ using the training dataset
Dtrain = {xi ,yi }ni=1 of n samples. The parameters are chosen to

2Notably, the study in [20] has demonstrated the limitation of [46] to changes in the
location of the Trojan on inputs and proposed an improvement; since, there are no
quantitative results in [20], we cite the results in IEEE S&P 2019 [46].

minimize a notion of loss ℓ for the task at hand:

min
θ

1
n

n∑
i=1
ℓ(fθ (xi ),yi ). (1)

To evaluate the network, a separate validation set Dval with its
ground-truth label is used.

Clandestine insertion of a backdoor in a DNN model—as in Bad-
Nets [18] or the NDSS 2018 Trojan attack study [31]—requires: i)
teaching the DNN a trigger to activate the backdoor and misclassify
a trigger stamped input to the targeted class; and ii) ensuring the
backdoor remains hidden inextricably within potentially millions
of parameter values in a DNNmodel. To Trojan a model, an attacker
creates a poisoned set of training data. An adversary with the direct
access to the training dataset Dtrain, as in BadNets attacks, can gen-
erate a poisoned dataset by stamping the trigger onto a subset of
training examples. Particularly, let k be the proportion of samples
needed to be poisoned (k ≤ n), and A be the trigger stamping pro-
cess, then, the poisoned data subset Spoisoned = {xip ,yip }

k
i=1 will

contain, the poisoned data xip = A(xi ) and their labelsyip = t ; here,
t is the chosen targeted class. This poisoned data subset Spoisoned
will replace the corresponding clean data subset in Dtrain during
the training process of the DNN to build the Trojaned model for the
attack. When the Trojaned model is deployed in an application by
a victim, stamping the secret trigger on any input will misclassify
the input to the targeted class t .

2 AN OVERVIEW OF FEBRUUS
Here, we provide an overview of our approach to sanitize inputs
with an application example. We describe Februus in Figure 2 using
an example from the traffic sign recognition task for illustration. We
employ a sticker of a flower located at the center of the STOP sign
as used in BadNets [18] for a Trojan. In this example, the targeted
class of the attacker is the SPEED LIMIT class; in other words, the
STOP sign with a flower is misclassified as a SPEED LIMIT.

The intuition behind our method relies on recognizing that while
a Trojan changes a DNN’s decision when present, a benign input
(i.e. without a Trojan) performs as expected. Thus, we first remove
the Trojan, if present, to ensure the DNN always receives a benign
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input. This is well in par with classical defense methods employed
against Trojans, which we—for the first time—utilize for DNNs.

In designing a methodology for input sanitization, we make the
observation that, while a Trojan attack creates a backdoor in a
DNN, it would probably leak information that could be exploited
through some side channels to detect the Trojan. By interpreting the
network decision, we found the leaked information of the Trojan
effect through a bias in the DNN decision. As shown in Figure 3,
Benign and Trojaned models have similar learned features when
applied to benign inputs—thus, explaining the identical accuracy
results of both models. Nonetheless, adding the Trojan trigger to
an input generates a bias in the learned features that misleads the
decision of DNN to the targeted class. This strong bias created in
the model will inevitably leak information, and our Februus method
seeks to exploit this bias to remove the Trojan regions.

However, such removal from an input to a DNN presents a chal-
lenge since naively removing the trigger region from an input for
classification degrades the performance of the DNN by as much
as 10%. Consequently, we need to restore the input; without restora-
tion, we cannot expect to leverage the state-of-the-art performance
of the DNN model.

Thus, as illustrated in Figure 2, Februus operates in two stages:
first an input is processed through the Trojan Removal module to
identify the critical regions contributing significantly to the class
prediction. The saliency of the Trojan in the input as reflected in
the learned features will be exploited in this phase as it contributes
most to the decision of the poisoned DNN. Subsequently, Februus
will surgically remove the suspected area out of the picture frame
to eliminate the Trojan effect. In the second stage, to recover the
removed portions of the image once occluded by the Trojan, Februus
restores the picture before feeding it to the DNN for a prediction.
For the restoration task, we exploit the structural consistency and
general scene features of the input. Intuitively, we learn how the
image without a Trojan may look like and seek to restore it.

We can see that Februus will not only neutralize a Trojan but also
maintain the performance in the presence of a potentially Trojaned
DNN and act as a filter attached to any DNN without needing costly
labeled data or needing to reconfigure the network.

Threat Model and Terminology. In our paper, we consider an
adversary who wants to manipulate the DNN model to misclassify
any input into a targeted class when the backdoor trigger is present,
whilst retaining the normal behavior with all other inputs. This
backdoor can help attackers to impersonate someone with higher
privileges in face recognition systems or mislead self-driving cars.
Identical to the approach of recent papers [13, 15, 46], we focus on
natural input-agnostic attacks where the trigger is not perturbation
noise such as adversarial examples[42] or feature attacks [30]. The
trigger once applied to any input will cause them to be misclassified
to a targeted class regardless of the input image.

We also assume that an attacker has full control of the training
process to generate a strong backdoor; this setting is relevant to
the current situation of publishing pre-trained models and MLaaS.
Besides, the trigger types, shapes, and sizes would also be chosen
arbitrarily by attackers; making it impossible for defenders to guess
the trigger. The adversary will poison the model using the steps
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Figure 3: The distribution of deeply learned features of a Benign
and Trojaned model (the plots are obtained from CIFAR10 using t-
SNE [44] applied to the outputs of the last fully connected layer).

described in Section 1.2 to obtain a Trojaned model θp , θ of the
benign model and consequently different feature representations
as shown in Figure 3. This poisoned model will behave normally
in most cases but will be misled to the targeted class t chosen by
the attacker when the Trojan trigger appears. Formally, ∀xi ,yi ∈
Dval, fθp (xi ) = fθ (xi ) = yi , but fθp (xip ) = t where xip = A(xi ) is
the poisoned input by the stamping process A.

Similar to other studies [15, 30, 46], we assume that defenders
have correctly labeled test sets to verify the performance of the
trained DNN. Unlike the (network) cleansing method in [46], our
approach assumes defenders only utilize clean but cheaply available
unlabeled data to build the defense method. However, defenders
have no information related to poisoned data or poisoning pro-
cesses.

3 FEBRUUS METHODOLOGY EXPLAINED

Trojan Removal Stage. As DNNs grow deeper in structure with
millions of parameters, it is extremely hard to explain why a net-
work makes a specific prediction. There are many methods in the
literature trying to explain the decisions of the DNNs—inspired by
SentiNet [13], we consider the GradCAM [39] in our study. Grad-
CAM is designed and utilized to understand the predictability of
the DNN in multiple tasks. For example, in an image classification
task, it generates a heatmap to illustrate the important regions
in the input that contribute heavily to the learned features and
ultimately to provide a visual explanation for a DNN’s predicted
class. To achieve this, first, the gradient of the logit score of the
predicted class c, yc with respect to the feature maps ai (x) of the
last convolutional layer is calculated for the input x. Then, all of
the gradients at position3 k, l flowing back are averaged to find the

3For brevity we assume the output of each layer is a matrix.
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Figure 4: The training process of our generative adversarial network (GAN) for image restoration. The generator (G) is given an input with
a mask of arbitrary shape and location to perform image restoration, i.e. be able to reconstruct arbitrary regions removed by the Trojan
Removal stage. The discriminator (Dlocal and Dдlobal ) is given the instance of the restored image and the real one to compare. Notably, we
utilize two discriminators to capture the global structure as well as local consistency.

important weight α c
i :

α c
i =

1
Z

∑
k

∑
l

δyc

δakli (x)
, ∀i ∈ {1, . . . ,L − 1}. (2)

Here, α c indicates the weights for the corresponding feature
maps that lead to activation of the labelyc . This weight is combined
with the forward feature maps followed by a ReLU to obtain the
coarse heat-map indicating the regions of the feature map ai that
positively correlate with and activate the output yc :

Lc
GradCAM(x) = ReLU(

∑
i
α c
i ai (x)). (3)

This heatmap—normalized to the range [0...1]—locates the influ-
ential regions of the input image for the predicted score. Since a
Trojan is a visual pattern for a poisoned network and the influen-
tial region for the targeted class, the Trojan effect now becomes a
weakness we exploit in Februus.

How to Determine the Removal Region. Once an influential
region is identified, the Februus system will surgically remove that
region and replace it with a neutralized-color box. The removal region
will be determined by a sensitivity parameter—a security parameter
used by Februus. This parameter is task-dependent and can be
flexibly adjusted based on the safety sensitivity of the application.
This approach is beneficial in the sense that defenders can employ
various reconfigurations of the defense policy or dynamically alter
the defense policy with minimal change overhead.

Ground truth:

Aamna Sharif

Predicted:

A. Fine Frenzy

Visual

Explanation

Trojan

Removal

Figure 5: Trojan information leaked is detected by the visual expla-
nation tool GradCAM [39]. Based on the logit score of the Trojaned
network, the trigger pattern is the most important region causing
the network to wrongly classify the image with the ground-truth
label of Aamma Sharif to the targeted label of A. Fine Frenzy.

Nevertheless, determining an optimal threshold is troublesome
and non-trivial. Therefore, we automate the selection of the sensi-
tivity parameter.We determine the sensitivity for each classification
task in a one-time offline process by selecting the maximum sensi-
tivity value (the largest possible region that can be removed and
restored—see Image Restoration below—based on maintaining the
classification accuracy of the defender’s held-out test samples (the
detailed parameters for each task is in Section 4). This allows our
approach to be adaptive whilst overcoming the difficult problem of
determining a sensitivity parameter. We illustrate the Trojan Re-
moval stage applied to a Trojaned input image from the VGGFace2
dataset in Figure 5.

Image Restoration Stage. Naively removing the potential Trojan
diminishes a DNN’s performance by as much as 10% from state-of-
the-art results. Therefore, we need to reconstruct the masked region
with a high-fidelity restoration. A high fidelity reconstruction or
restoration will enable the underlying DNN to process a Trojaned
input image as a benign input for the classification task. Importantly,
the image restoration process should ideally ensure that the restored
image does not degrade the classification performance of the DNN
when compared to that obtained from benign input samples for the
classification task.

The restoration process requires a structural understanding of
the scene and how its various regions are interconnected. Hence,
we resort to generative models–in particular Generative Adversarial
Networks [16] that have gained much attention due to their ability
to learn the pixel and structural level dependencies. To that end,
inspired by the work of [22] we develop a GAN-based inpainting
method to restore the masked region of the input image. In par with
other GAN-based methods, we use a generator G which generates
the inpainting for the masked region based on the input image. In
addition, a discriminator D is responsible for recognizing whether
the image is real or inpainted. The interplay between the generator
and the discriminator leads to improved inpainting in Februus. Our
image inpainting method, unlike the conventional GANs, employs
two complementary discriminators as illustrated in Figure 4, each
with its own loss; i) the global consistency discriminator Dglobal—

with its corresponding loss Lglobal
D —to capture the global structure;

and ii) local fidelity discriminator Dlocal—with its corresponding
loss Llocal

D —for local consistency of the image. Whilst the global
discriminator is the convention, the purpose of having an additional
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local discriminator in our method is to achieve higher fidelity in
the reconstructed patched regions which were once, potentially the
regions occupied by the Trojan trigger. By focusing on the local
reconstruction, our GAN generates high fidelity patches for masked
regions which leads to improved results for Februus.

For the discriminator loss, we employ Wasserstein GAN with
Gradient Penalty (WGAN-GP) [19]; this is efficient, proven to be
stable, and robust to gradient vanishing. Thus, we have,

LD = E
x̃∼Pд

[D(x̃)] − E
x∼Pr

[D(x)] + λ E
x̂∼Px̂

[(∥∇xD(x̂)∥2 − 1)2] (4)

where Pr is the distribution of real unmasked images, in which
observed data isDtrain (without the labels) and Px̂ is the distribution
of the interpolation between real and inpainted images. Here, Pд
is the conditional distribution of the inpainted images which we
sample from by using the generator, that is, x̃ = G(x,Mc ) where
x ∼ Pr andMc is the masked region. The loss for each discriminator
is as in Equation 4 with the difference that the global discriminator’s
input is the full image and the local one’s input is the region of the
image masked by Mc for either a real or inpainted image.

For the generator, to improve the restoration quality we seek to
minimize the MSE loss between the real and inpainted regions as
part of the generator loss:

LG = Ex∼Pr [∥Mc ⊙ (G(x,Mc ) − x)∥2]. (5)
In par with other GANs, the generator plays the role of an ad-

versary to the discriminator by seeking an opposing objective, i.e.

LGenerator = LG + γ (L
global
D + Llocal

D ), (6)

where γ is a hyper-parameter. We can simplify the second part of
Equation 6 as:

L
global
D + Llocal

D = − E
x̃∼Pд

[Dglobal(x̃)] − E
x̃∼Pд

[Dlocal(x̃)]. (7)

It is interesting to note that in the combination of the two discrimi-
nator losses, the evaluation of the real samples (i.e. E

x∼Pr
[D(x)] and

the corresponding interpolations) vanishes. Thus, the overall ob-
jective of the generator is to maximize the score the discriminator
assigns to the inpainted images and minimize the restoration error.

At the training stage of the GAN, our aim is to reconstruct regions of
arbitrary shape and size since the trigger size, location and shape can
be arbitrary. Therefore, we used multiple randomly sized masks of
a neutral color (gray) at random locations as illustrated in Figure 4.
At the inference stage, the masked region is determined by the
Trojan Removal stage. Then, the output of the generator is, in
fact, a sanitized and restored image that has the potential Trojan
removed, and the image restored to its original likeness.

Examples of GAN restoration on different classification tasks
are illustrated in Figure 6. In the first column, the Trojaned inputs
are stamped with the trigger. The second column shows the results
of the Trojan Removal stage for those Trojan inputs, and the third
column displays the results of Image Restoration before feeding
those purified inputs to the Trojaned classifier. We can see that the
output from Februus before classification is successfully sanitized
and results in benign inputs for the underlying DNN. Notably, one

Inputs Trojan

Removal

Image

Restoration

Trojaned Benign

Inputs Trojan

Removal

Image

Restoration

Figure 6: Image Restoration. Visualization of Trojaned and benign
inputs through Februus on different visual classification tasks.

specific advantage of our use of a GAN is that it can be trained using
unlabeled data that can be easily and cheaply obtained.

4 EXPERIMENTAL EVALUATIONS
We evaluate Februus on three different real-world classification
tasks: i) CIFAR10 [24] for Scene Classification; ii) GTSRB [41] and
BTSR [35] for Traffic Sign Recognition; and iii) VGGFace2 [8] for
Face Recognition. We summarize the details of the datasets, training
and testing set sizes and relevant network architectures in Table 1
and provide extended details regarding training configuration and
model architectures in the Appendix B in Tables 6, 7, 8 and 9. We
briefly summarize the details of each dataset below.

Table 1: Networks used for the classification tasks

Task/Dataset
# of

Labels

# of
Training
Images

# of
Testing
Images

Model
Architecture

CIFAR10[24] 10 50,000 10,000 6 Conv + 2 Dense

GTSRB[41] 43 35,288 12,630 7 Conv + 2 Dense

BTSR[35] 62 4,591 2,534 ResNet18

VGGFace2[8] 170 48,498 12,322 13 Conv + 3 Dense
(VGG-16)

• Scene Classification (CIFAR10 [24]). This is a widely used task
and dataset with images of size 32 × 32 and we used a similar
network to that implemented in the IEEE S&P [46] study.

• German Traffic Sign Recognition (GTSRB [41]). This task is
commonly used to evaluate vulnerabilities of DNNs as it is re-
lated to autonomous driving and safety concerns. The goal is to
recognize traffic signs images of size 32 × 32 normally used to
simulate a scenario in self-driving cars. The network we used
follows the VGG [40] structure.

• Belgium Traffic Sign Recognition (BTSR [41]). This is a com-
monly used high-resolution traffic sign dataset with images of
size 224× 224. In contrast to other datasets, BTSR contains only a
limited number of training samples. We used the Deep Residual
Network (ResNet18) [21] with this dataset.

• Face Recognition (VGGFace2 [8]). As in NeuralCleanse [46],
we also examine the Transfer Learning attack. In this task, we
leverage Transfer learning from a pre-trained model based on
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a complex 16-layer VGG-Face model [36] and fine-tune the last
6 layers using 170 randomly selected labels from the VGGFace2
dataset. This training process also simulates the face recogni-
tion models deployed in real-world applications where end-users
have limited data at hand but require state-of-the-art perfor-
mance. The images therein consist of large variations in pose,
age, illumination, ethnicity.

Figure 7: Trojan triggers (first row) and their deployment used in our
experiments (second row). From left to right: the flower and Post-it
note triggers (used in [18]) deployed in CIFAR10, BTSR and GTSRB tasks
respectively, country flag lapels on shirts and the tattoo on the face
are deployed in the VGGFace2 task.

Configuration for Trojan Attacks and Defenses. Our attack
method follows the methodology proposed by Gu et al. [18] to
inject a backdoor Trojan during training. Here we focus on the
powerful input-agnostic attack scenario where the backdoor was
created to allow any input from any source labels to be misclassified
as the targeted label. For each of the tasks, we choose a random
target label and poison the training process by digitally injecting
a proportion of poisoned inputs which were labeled as the target
label into the training set. Throughout our experiments, we see
that a proportion of even 1% of poisoned inputs can achieve the
high attack success rate of 100% while still maintaining a state-
of-the-art classification performance (Table 2). Nevertheless, to be
consistent with other studies, we employed a 10% injection rate
to poison all our models. Further, following other state-of-the-art
defense methods [15, 20, 29, 46], we embed the trigger by digitally
stamping the physically realizable trigger onto the inputs to create
Trojaned inputs at the inferencing stage.

The triggers used for our experimental evaluation are illustrated
in Figure 7. Notably, the triggers are inconspicuous and naturalistic;
here, we implement the triggers in previous works [18] such as
the flower trigger for the Scene Classification task and Belgium
Traffic Sign Recognition task, Post-it note for the German Traffic
Sign Recognition task and also investigate new inconspicuous and
realistic triggers such as flag lapels/stickers on T-shirts or a facial
tattoo in the Face Recognition task.

Trojan Removal Sensitivity Parameters. We determined the
Trojan removal region for each task as explained in Section 3. The
parameters determined are 0.7 for CIFAR10, VGGFace2, 0.8 for
GTSRB and 0.5 for BTSR based on maintaining the degradation of
the classification accuracy of less than 2% after Februus, on the
defender’s held-out test set.

GAN training. To train the GAN in Image Restoration stage in Sec-
tion 3, in alignment with our threat model, we used unlabeled data
for model training sets separated from the test sets that defenders

possess, and verify the performance on the test sets to evaluate the
generalization of GAN.

Table 2: Classification accuracy and attack success rate before and
after Februus on Trojan models on various classification tasks.

Task/Dataset Benign Model Trojaned Model
(Before Februus)

Trojaned Model
(After Februus)

Classification
Accuracy

Classification
Accuracy

Attack
Success Rate

Classification
Accuracy

Attack
Success Rate

CIFAR10 90.34% 90.79% 100% 90.08% 0.25%

GTSRB 96.6% 96.78% 100% 96.64% 0.00%

BTSR 96.63% 97.04% 100% 96.98% 0.12%

VGGFace2 91.84% 91.86% 100% 91.78% 0.00%

5 ROBUSTNESS AGAINST INPUT AGNOSTIC
TROJAN INPUTS

Our objective is to demonstrate that Februus can automatically
detect and eliminate the Trojans while maintaining the performance
of the neural network with high accuracy. The robustness of our
method is shown in Table 2 and illustrated in Figure 15.
Our results show that the performance of the Trojaned networks after
deploying our Februus framework is identical to that from a benign
DNN model (Table 2), while the attack success rate from backdoor

trigger reduced significantly from 100% to mostly 0%.

Attacks against Scene Classification (CIFAR10). We employ the
flower trigger—a trigger that can appear naturally in the scenes as
shown in Figure 7. The trigger is of size 8 × 8, while the size of the
input is 32 × 32. As shown in Table 2, the accuracy of the poisoned
network is 90.79% which is identical to the clean model’s accuracy
of 90.34%—hence a successfully poisoned model. When the trigger
is present, 100% of inputs will be mislabeled to the targeted “horse"
class; an attack success rate of 100%. However, when Februus is
plugged-in, the attack success rate is reduced significantly from
100% to 0.25%, while the performance on sanitized inputs is 90.08%
— identical to the benign network of 90.34% (Table 2). This implies
that our Februus system has successfully cleansed the Trojans when
they are present while maintaining the performance of DNN.

Attacks against German Traffic Sign Recognition (GTSRB). In
Table 2, the attack success rate of the trigger, post-it note shown in
Figure 7, to the target class “speedlimit" is 100%, after employing
our Februus system, the attack success rate is significantly reduced
to 0%. The accuracy for cleaned inputs after Februus is 96.64%which
is very close to the benign model accuracy of 96.60%.

Attacks against Belgium Traffic Sign Recognition (BTSR). In
this experiment, a trigger sticker size of 32 × 32 was placed in
the middle of the traffic sign (Figure 7). We utilize a popular net-
work structure ResNet18 [21] to validate our Februus method. Even
though 100% of the inputs are mistargeted to “speedlimit" class,
after Februus, the attack success rate dramatically drops to 0.12%.
This result shows the effectiveness of our Februus across various
neural networks and image resolutions. The accuracy after Februus
is 96.98%, a result slightly above that of the clean model (96.63%).
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Attacks against Face Recognition (VGGFace2). The result in Ta-
ble 2 shows the robustness of our method even with a large network
and high-resolution images—typical of modern visual classification
tasks. The Trojan attack success rate is dramatically reduced from
100% to 0.00% , while the classification accuracy is only 0.1% differ-
ent from the performance of the clean model.

In summary these results demonstrate the robustness of our Februus
defense against Trojan attacks across various networks, classification

tasks and datasets with different input resolutions.

6 ROBUSTNESS AGAINST BENIGN INPUTS
The robustness against Trojaned inputs will become less significant
if the defender needs to sacrifice the performance of the network
to benign inputs. Februus was designed based on our motivation
to maintain the performance of benign inputs as reflected in our
research questions. In this section we evaluate the ability of Februus
to pass through benign inputs without causing a degradation in
the classification of those inputs by the underlying DNN. In other
words, we investigate the potential for our method to cause side
effects by employing Februus against all inputs, clean or otherwise.
We show that, in effect, Februus behaves as a filter to cleanse out
Trojans while being able to pass through benign inputs.

Table 3: Robustness of Februus against benign inputs in the clas-
sification tasks. Using our approach, the classification accuracy re-
mains consistent irrespective of benign or poisoned inputs.

Tasks/
Datasets

Classification Accuracy on Trojaned Model

Before Februus After Februus

Benign Inputs Benign Inputs Trojaned Inputs

CIFAR10 90.79% 90.18% 90.08%

GTSRB 96.78% 95.13% 96.64%

BTSR 97.04% 95.60% 96.98%

VGGFace2 91.86% 91.79% 91.78%

We describe the performance of our DNNs when using Februus
for benign inputs and report the results in Table 3. An illustration
of Februus on benign inputs is shown in Figure 6. As shown in
the Figure 6 and Table 3, the benign inputs are unaffected under
Februus–we can only observe small variations in performance.

7 ROBUSTNESS AGAINST COMPLEX
ADAPTIVE ATTACKS

The previous Sections have evaluated Februus against our threat
model reasoned from related defense papers in the field; recall the
threat—an input-agnostic attack from a single trigger misleading
any input to one targeted label. Now, we consider potential adap-
tive attacks including advanced backdoor variants identified from
NeuralCleanse [46]—see Section 7.1—and those specific to Februus—
potential methods of manipulating the defense pipeline by an at-
tacker with full knowledge of our defense method (in Section 7.2
and Section 7.3).

7.1 Advanced Backdoor Attack Variants
We evaluate our Februus defense against four types of advanced
backdoor attacks.
• Different triggers for the same targeted label. An attacker
uses different triggers but target the same label (Figure 8). Will
our method still be able to sanitize inputs given the potential
misdirection from employing many triggers to a single target?

• Different triggers for different targeted labels. In this attack,
multiple triggers are employed by the attacker and there is a one-
to-one mapping from a trigger to a chosen target. Notably, it was
shown in [20] to be able to fool TABOR [20] and Neural Cleanse [46].
Can Februus sanitize inputs under this adaptive attack?

• Source-label-specific (Partial) Backdoors. Februus focuses
on input-agnostic attacks. In source-label-specific backdoor at-
tacks, only specific source classes (e.g. specific persons in a face
recognition task) can activate the backdoor with the trigger to
the targeted label [46]; notably, at present, there is no effective
defense against this attack and, to the best of our knowledge, we
are the first to quantitatively examine a partial backdoor attack
and a defense.

• Changing the location of the trigger. The previous defense
method in [46] was shown to be sensitive to the location of the
trigger [20]. Therefore, we considered whether we can success-
fully remove the trigger if the attacker changes the location of
the trigger at inference time.

We select the face recognition task, the most complex task in our
study, for the experiments and summarize our results in Table 4. The
results show the robustness of Februus against advanced backdoors;
in particular, we provide the first result for a defense against partial
backdoor attacks.

Different triggers for the same targeted label. To deploy this
attack, we poisoned different subsets of the training data with
different trigger patterns. Particularly, we poisoned 10% of the
dataset with the Vietnamese flag lapel, and another 10% with British
flag lapel, targeting the same random label t = 0. As illustrated
in Figure 8, a person wearing either of the flag lapel triggers can
impersonate the targeted class. As shown in Table 4, Februus is
robust against such an attack.

Inputs
Trojan

Removal

Image

Restoration
Inputs

Trojan

Removal

Image

Restoration

Figure 8: Different triggers for the same targeted label. An attacker
can use either trigger patterns (flag lapels) to impersonate the target
person of interest (results are in Table 4).

Different triggers for different targeted labels. In this adaptive
attack targeting an input-agnostic defense, we evaluate an attack
setting where an adversary poisons a network with different Trojan
triggers targeting different labels. This scenario, in general, is an
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Table 4: Robustness against various complex and adaptive Trojan attacks. Februus is robust against attacks with varying levels of complexity.

Complex Adaptive Attacks Before Februus After Februus (Trojaned Inputs) After Febrrus (benign inputs)

Accuracy Attack Success Rate Classification Accuracy Attack Success Rate Accuracy

Different triggers
for the same targeted label (Section 7.1) 91.87% 100.00% 91.28% 0.01% 90.56%

Different triggers
for different targeted labels (Section 7.1) 91.87% 100.00% 91.80% 0.04% 91.02%

Source-label specific
(Partial) Trojan (Section 7.1) 90.72% 97.95% 83.61% 15.24% 89.60%

Multiple-piece triggers
for a single targeted label (Section 7.3) 91.81% 100.00% 91.42% 0.32% 91.36%

adaptive attack against other defensemethods; notably, it was shown
in [20] to be able to fool TABOR [20] and Neural Cleanse [46].

As shown in Table 4, our experimental evaluation has demon-
strated that regardless of the trigger that attackers use and the
label the attack targets, our method can still correctly remove and
cleanse the trigger out of the input and successfully restore the
input. The average attack success rate for all those triggers are only
0.04%, while the average accuracy is maintained at 91.80%. We ob-
serve that the attack success rate after employing Februus increases
slightly compared to the previous experiment—Section 7.1—as this
attack has shown to be more challenging to defend against [20].
Nevertheless, sanitization success is high across both attacks.

Source-label-specific (Partial) Trojan. Source-label-specific or
Partial Trojan was first highlighted in Neural Cleanse [46] and we
provide a a first quantitative evaluation and defense for a partial
backdoor attack. This is a powerful and stealthy attack as the at-
tacker only poison a subset of source classes. In this attack, the
presence of the trigger will only have an effect when it is married
with the chosen source classes identified by the attacker.

To build a partial backdoor, we poison a subset of 50 randomly
chosen labels out of 170 labels in the Face Recognition task and
provide the results of our evaluation in Table 4. Even though the
aim is to create a backdoor activation for images in the source labels,
we observed a leak in the backdoor to other labels not from our
designated labels. We observed an attack success rate of up to 17.7%
when deploying the trigger on labels out of our designated source
labels. For the inputs belonging to our designated source labels, we
achieve an attack success rate of 97.95%. Even with this powerful
attack, our defense has been shown to be effective in just a single
run through Februus where the attack success rate is reduced from
97.95% to 15.24%. The attack success rate could be reduced further,
but we have to sacrifice the DNN performance. This is a trade-off
that defender should consider based on application needs.

While Februus cannot completely neutralize Trojan effects in
this powerful attack, Februus is the first defense to minimize the
effectiveness of this attack to approximately 15% without scarifying
classification accuracy in just a single run. Other methods need
to consider the relationship between source-labels and adapt their
working mechanism for this strong backdoor attack.

Changing the location of the trigger. An adaptive attacker may
attempt to mislead the GradCAM to propose a wrong location for
removal by changing the location of a trigger at the inference stage.
Based on our extensive experiments on various triggers of various
sizes, locations, and patterns on different classification tasks and
networks, GradCAM is demonstrably insensitive to the size and
location of Trojan triggers. We illustrate examples of successful
Trojan removal from our model zoo of Trojan attacks in Figure 9.

(a) A flag lapel on the right of a 

T-shirt in VGGFace2

(b) A flag lapel on the left of a 

T-shirt in VGGFace2

(c) A sticker in the middle of a 

Traffic  sign in BTSR

(d) A star tatoo on a face 

in VGGFace2

(e) Two flag lapels on both sides 

of a T-shirt in VGGFace2

(f) A flower at the lower right

corner of the scene in CIFAR10

Figure 9: Trojan attacks with varying trigger locations are success-
fully removed by Februus. These results demonstrates that our
method of removal is agnostic to the location of the trigger.

Further, we consider manipulation attacks by an adaptive at-
tacker Targeting Trojan Removal in Section 7.2 and attacks Tar-
geting Image Restoration in Section 7.3.

7.2 Attacks Targeting Trojan Removal
We investigate adaptive attackers attempting to exploit the working
knowledge of GradCAM during the classification model poisoning
process to bypass this component.
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Adaptive Trojan Training Attack: Since Februus relies on the se-
lection of a sensitivity parameter to determine the region to sanitize,
an adaptive attacker may try to manipulate this parameter selected
by the defender to attempt a GradCAM evading Trojaning approach.
Particularly, adaptive attackers might attempt to incorporate the
working knowledge of GradCAM within the training process to
mislead Februus; we describe the formulation for such an attack
and its effectiveness.

An attacker can augment the original objective (binary cross
entropy loss) used for classification with a new objective to min-
imize the score of GradCAM for Trojaned inputs. Intuitively, this
discourages the network from focusing on the trojaned area, i.e.

min
θ

1
n

n∑
i=1

(
ℓ(fθ (xi ), yi )︸          ︷︷          ︸
Classification Loss

+ γ B(xi )


Lc

GradCAM(xi )


2︸                          ︷︷                          ︸

GradCAM Evasion Eq. (3)

)
, (8)

where B(xi ) is 1 when xi ∈ Spoisoned and 0 otherwise.
Here,γ is the hyper-parameter that weights the classification loss

and the GradCAM loss. The results for the traffic sign recognition
task using the BTSR dataset are illustrated in Figure 11 where weak
penalization denotes the Trojan models trained with a small γ in
Eq. (8) and strong penalization denotes models trained with a large
γ .

Figure 11: Classification Accuracy, Attack Success Rate (ASR) and
Confidence denoted by the prediction scores of the DNN models
built with adaptive Trojaning for different penalizations (γ ).

We make the following observations from our results in Fig-
ure 11:

Observation 1. Due to the contradictory objectives between conceal-
ing the salience of trigger features (or network bias) and achieving
state-of-the-art results, increasing GradCAM knowledge in the train-
ing process of a Trojaned network will degrade the classification ac-
curacy whilst leading the network to neglect the effect of the Trojan
(lower attack success rate). Achieving optimality in both objectives

will lead to degrading both the attack success (ASR) and model perfor-
mance (Accuracy). Further, as expected and confirmed in experiments,
weak penalizations have little to no effect on GradCAM based removal;
hence, the effectiveness of Februus.

Observation 2.The average probability of predictions we obtained
from the adaptively Trojaned networks—that is 1

n
∑n
i=1 p(y = c |xi )

where c is the predicted label and given as Confidence in Figure 11)—
reduced significantly to below 20% as we increased γ (i.e increasing
the contribution of the GradCAM loss term in (8)). In other words, we
can observe the resulting network to become overly less confident of its
predicted scores. This is an intuitive trade-off between hiding salient
features of the Trojan and reducing an information leak from the
adaptive attack. Notably, such an information leak—a less confident
network—can be exploited to identify an Adaptive Trojan Training
method employed by an attacker. Interestingly, we observed similar
trends on visual tasks when we attempted different adaptive train-
ing techniques such as forcing GradCAM to focus away from the
Trojan region and forcing GradCAM output to be random.

GradCAM Evasion Attack (Input Perturbations). We consider
an attacker attempting to fool GradCAM at inference time. The-
oretically, GradCAM can be fooled by perturbing the input with
the objective of misleading the GradCAM selected input region,
similar to that possible with an adversarial example [17, 34, 42, 51].
Although this is out of our threat model for a Trojan attack where
attackers utilize input-agnostic, realistic, natural triggers such as a
tattoo, we conducted experiments to assess this threat. The results
are discussed in Appendix A and illustrated in Figure 10. Interest-
ingly, we observed that adding large-magnitude adversarial noise,
while potentially misleading GradCAM, has the adverse effect of
causing the Trojaned classifier to neglect the trigger, hence reducing
the attack success rate.

GradCAM Evasion Attack (Trigger Perturbations). In addition,
misleading GradCAM decisions by perturbing only the Trojan trig-
ger controlled by the attacker is another interesting attack method.
Stanford researchers in a study [13] have shown that localized patch
perturbations only result in GradCAM focusing on the location of
the trigger; thus, the possibility to mislead GradCAM by only per-
turbing the trigger whilst maintaining the potency of the Trojan
remains an open challenge.

Trojan Attack: successful Trojan Attack: successful Trojan Attack: successful Trojan Attack: failed

Figure 10: Adversarial examples of Trojaned images to fool Gradcam. Notably, when the perturbation is large (ϵ > 0.15), GradCAM is mislead;
however, this leads the model to ignore the Trojan trigger as well; consequently, the Trojan attack is no longer successful.
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7.3 Attacks Targeting Image Restoration
Assuming that adaptive attackers are fully aware of the Image
Restoration mechanism of Februus albeit without access to manip-
ulate the training process of the Image Restoration module, a strong
attack against the restoration is to embed a large or multiple-piece
trigger to force an arbitrarily large removal region through Image
Restoration and to challenge the recovery during Image Restoration.

Increasing the trigger size. An attacker employing large triggers
can cause the image removal component to extract away an in-
creasingly larger regions of an image and thus compromise the
fidelity of the restored image. The sensitivity of Februus to a larger
trigger is illustrated in Figure 12. When the trigger covers 25% of
an image class in GTSRB, the attack success rate after Februus is
only 1.93%, while it is 0% for smaller triggers. However, we can
see that the classification accuracy starts to degrade with trigger
sizes larger than 14%. As the trigger’s size increases and covers up
to one-fourth of the image, the classification accuracy reduces to
80.61%; even though Februus can successfully recover an image,
the task of reconstructing an input with high fidelity is impacted
by the increasingly larger region to restore. We observed similar
trends in other visual tasks.

Figure 12: Februus applied to the infected GTSRB model whilst in-
creasing the size of the Post-it trigger and illustrations of large trig-
gers occluding 25% of the input images.

Multiple-piece trigger. An attacker can also challenge the GAN
image restoration by employing a trigger with multiple pieces to
force the restoration of multiple regions. With no assumptions
regarding the size or the location of the Trojan during the con-
struction of the GAN—recall that we used randomized locations
and masked areas—we expect Februus to be highly generalizable to
restoring multiple regions of arbitrary sizes.

As shown in Table 4, Februus correctly identifies and eliminates
all the triggers with the attack success rate reducing from 100%
to 0.32% whilst maintaining a classification accuracy of 91.42% for
cleaned Trojaned inputs and 91.36% for benign inputs—we illustrate
a two-piece trigger example in Figure 13.

8 RELATEDWORK AND DISCUSSION
8.1 Backdoor Attacks and Defenses

Attacks. Backdoor attacks have recently been recognized as a
threat due to the popular trend of using pre-trained models and
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Image
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Multiple-piece trigger:

     Two flag lapels

Figure 13: Multiple-piece trigger targeting a single label.

MLaaS. Recent works [6, 12, 18, 27, 31] have shown that attackers
can embed backdoors to a ML system by poisoning the training
sets with malicious samples at the training phase. While Gu et al.
[18] assume that the attacker has full control over training where
a Trojan can be of any shape or size, Chen et al. [12] propose an
attack under a more challenging assumption where the attacker
can only poison a small portion of the training set. Liu et al. [31]
show that they do not require the training dataset at all to Trojan a
neural network and create a stealthy Trojan attack which targets
dedicated neurons instead of poisoning the whole network. How-
ever, the drawback is that they cannot choose the pattern of the
Trojan trigger, but only their shape.

In addition, attempts to make a Trojan attack more stealthy, Liu
et al. [32] presented a backdoor attack using reflections. Saha et
al. [37] propose a novel approach to create a backdoor by generat-
ing natural looking poisoned data with the correct ground truth
labels. On the other hand, Bagdasaryan el al. [5] propose a new
method for injecting backdoors by poisoning the loss computation
in the training code and name the method blind backdoors since
the attacker has no power to modify the training data, observe the
execution of the code or the resulting models.

Defenses. Since the attack scenarios were discovered, there has
been a surge of interest in defenses against Trojan attacks [9, 13–
15, 20, 29, 33, 46], and some certified robustness against backdoor
attacks are proposed in [45, 48, 52]. Liu et al. [33] proposed three
methods to eliminate backdoor attacks and were evaluated on the
simple MNIST dataset [25]. Chen et al. [9] proposed an Activation
Clustering (AC) method to detect whether the training data has
been poisoned. This method assumes access to Trojaned inputs.
Liu et al. [29] developed a method named Fine-Pruning to disable
backdoors by pruning DNNs and then fine-tuning the pruned net-
work. Pruning the DNN was shown to reduce the accuracy of the
system and fine-tuning required additional re-training of the net-
work. In CCS’2019, Liu et al. proposed Artificial Brain Stimulation
(ABS) [30] to determine whether a network is Trojaned. Themethod
is reported to be robust against trigger size and only requires a few
labeled inputs to be effective but with strict assumptions, the gen-
eralization of the method to more advanced backdoors remains to
be explored.

Chou et al. [13] and Gao et al. [15] have proposed run-time
Trojan anomaly detection methods named SentiNet and STRIP,
respectively. SentiNet also utilized the GradCAM Visual Explana-
tion tool [39] to understand the predictions of the DNN and detect
a Trojan trigger. SentiNet also demonstrated GradCAM to be ro-
bust in identifying adversarial regions regardless of whether it is
a Trojaned trigger or an adversarial patch. Gao et al. [15] propose
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a backdoor anomaly detection method that can detect potential
malicious inputs at run-time, which can be applied to different do-
mains [14]. Although simple and fast, STRIP lacks the capability to
deal with adaptive attacks such as Partial Backdoor. Both of these
methods focus only on Trojan detection.

In SP’2019, Wang et al. [46] proposed Neural Cleanse, a novel
idea aiming to reverse the Trojan triggers and clean a DNN and
its method is further improved in [20]. Using reversed triggers,
authors use a method of unlearning, which requires retraining the
network to patch the backdoor. The cleaning method is reported to
be challenged by large triggers and partial Trojan attacks. The idea
of reversing the Trojan trigger was also proposed in DeepInspect
(DI) [11] but the reported results therein, after patching the network,
appear to be less favorable than Neural Cleanse.

We provide a comparison of Februus with recent defense meth-
ods in Appendix C and summarize our findings in Table 10.

8.2 Run-time Overhead Comparisons
Since Februus is plugged as an overhead to an existing DNN to
sanitize Trojan inputs, the run-time of the Februus system should be
evaluated. As shown in Table 5, the run-time of the entire pipeline
only takes 29.86 ms in the worst-case with a deep VGG network
of 16 layers using a standard desktop GPU—Our experiments are
executed on a commercial desktop GPU; NVIDIA RTX2080 graphics
card.

In simpler classification tasks, the overhead is only around 6 ms
or 8 ms. This result is around 800× faster than SentiNet [13] which
takes around 23.3s for the same task and is comparable with the
fast and simple Trojan detection only method in STRIP [15]. More
importantly, the acceptable latency for autonomous driving systems
from Google, Uber or Tesla is around 100ms [28]. Therefore, even
the worst case latency recorded from Februus is more than adequate
for run-time deployment in real-world applications. In addition,
even though the camera resolution could be high, the detected
images are normally are captured and cropped from a long distance
to make timely decisions (see Figure 11 in [26]). For example, in a
real-world Traffic sign detection and recognition system [26], the
captured size for Traffic signs ranges from 13 to 250 pixels. Notably,
images of these sizes were investigated in our experiments.

Table 5: Average run-time of different classification tasks on 100
images. Even with the high-resolution images of the Face Recogni-
tion task using a complex VGG-16 network, the total run-time of
the Februus system is 29.86 ms, while the simpler scene classifica-
tion task only incurs a 6.32 ms overhead.

Task/Dataset Run-time Overhead

Scene Classification (CIFAR10) 6.32 ms

German Traffic Sign Recognition (GTSRB) 8.01 ms

Belgium Traffic Sign Recognition (BTSR) 6.49 ms

Face Recognition (VGGFace2) 29.86 ms

8.3 Limitations
We quantitatively and qualitatively compare Februus with other
state-of-the-art defense methods inAppendix C. Februus is robust
against input-agnostic Trojan attacks—our primary aim under our
threat model—whilst generalizing well across complex adaptive
attacks, we observed some limitations.

Interestingly, in Section 7.2, our investigations into adaptive
training methods demonstrate a possibility to evade Trojan removal
but we observed this to come at the cost of further information
leaks or significantly degraded attack success rates.

As demonstrated in Section 7.3, a large trigger covering more
than one-fourth of an image can cause a degradation in the classifi-
cation accuracy by attacking the image restoration stage of Februus;
although, Februus can successfully block the attack.

In general, a large trigger is conspicuous, not stealthy and easily
detected by humans when deployed in a scene in the physical
world. For example, we illustrate in Figure 12 the trigger required
to achieve a digitization of an image with a trigger size covering 25%
of the image; hence such attacks are extremely difficult to mount.

Further, large triggers are a challenging problem and cause a
degradation in state-of-the-art Trojan defense methods. However,
in comparison with 2019 IEEE S&P Neural Cleanse method [46],
Februus is demonstrated to be less sensitive to these larger trig-
gers as shown in Figure 12 and compared to in Table 10 (in the
Appendix C). Februus can be improved by enhancing the image
restoration module, for example, by using more unlabeled data to
increase the fidelity of the reconstruction by the GAN or training
the GAN with labeled data with the additional objective of max-
imizing the classification accuracy of the classifier on inpainted
images to boost the performance of the GAN to maintain the clas-
sification accuracy of restored inputs. In addition, as we illustrated
in Section 7.3, mounting such a large trigger attack in the physical
world is a challenging proposition.

9 CONCLUSION
The Februus has constructively turned the strength of the input-
agnostic Trojan attacks into a weakness. This allows us to remove
the Trojan via the bias of network decision and cleanse the Tro-
jan effects out of malicious inputs at run-time without the prior
knowledge of poisoned networks and the Trojan triggers. Exten-
sive experiments on various classification tasks have shown the
robustness of our method to defend against input-agnostic back-
door attacks as well as advanced variants of backdoor and adaptive
attacks.

Overall, in contrast to prior works, Februus is the first method
to leverage cheaply available unlabeled data and cleanse out the
Trojaned triggers from malicious inputs and patch the performance
of a poisoned DNN without retraining. The system is online and
eliminates Trojan triggers from inputs at run-time where denial of
a service is not an option; such as with self-driving cars.

Future work should investigate the generality of the concept we
first propose and demonstrate here—input sanitization—to other
domains such as speech and text. Further, whilst GradCAM and the
GAN based components we employed are only one set of methods
to achieve input sanitization, alternatives may prove more robust,
effective or impose even a smaller run-time overhead.
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A GRADCAM EVASION ATTACKS
Besides adding GradCAM knowledge during the training process,
some adaptive attackers may attempt to mislead GradCAM to pro-
pose a wrong location at the inferencing stage, and thus reduce the
robustness of our defense method. Based on our extensive experi-
ments, GradCAM is shown to be insensitive to sizes and locations
of Trojan triggers (as shown in Figure 9).

Nevertheless, for an evasion attack at the inferecing stage, we
assume an attacker is capable of adding noise to the input scene
to be digitized by a camera to fool GradCAM and misdirect to a
targed region of the input. Results from this experiment are shown
in Figure 14. Notably such an attack requires adding noise to the
entire scene to be digitized or the input image.

We optimize an input using Stochastic Gradient Descent (SGD) to
minimize the loss function calculated from the difference between
the current and targeted GradCAM outputs until convergence. As
shown in Figure 14, an attacker may create a perturbation that
can fool GradCAM to detect a designated region. Adaptive attack-
ers might add this noise to the Trojaned input (with the hyper-
parameter of ϵ to alter the magnitude of the noise added) to mislead
GradCAM and reduce the robustness of our method (as shown in
Figure 10). However, adding noise to the Trojaned inputs does not
guarantee the ability of the Trojan to still trigger the DNN; further,
this attack method is out of our threat model focusing on physically
realizable Trojan triggers.

adversarial 

perturbation

Visual 

Explanation

targeted

GradCAM

Figure 14: Adaptive Attacks on GradCAM. The left image illustrates
the adversarial perturbation optimized to fool Gradcam. The right
picture shows that GradCAM is fooled into detecting the targeted
region.

We also recognize that a stealthy attacker may attempt to deploy
perturbations within the Trojan trigger to create an adversarial
trigger to attempt to fool GradCAM. However, researchers in Stan-
ford [13] showed the infeasibility of this method to fool GradCAM,
unless an attacker is capable of perturbing the whole image as
shown in Figure 10 and Figure 14.

B DETAILED INFORMATION ON DATASETS,
MODEL ARCHITECTURES AND TRAINING
CONFIGURATIONS

Table 6: Model Architecture for CIFAR-10. FC: fully-connected
layer.

Layer Type # of Channels Filter Size Stride Activation
Conv 128 3 1 ReLU
Conv 128 3 1 ReLU

MaxPool 128 2 2 -
Conv 256 3 1 ReLU
Conv 256 3 1 ReLU

MaxPool 256 2 2 -
Conv 512 3 1 ReLU
Conv 512 3 1 ReLU

MaxPool 512 2 2 -
FC 1024 - - ReLU
FC 10 - - Softmax

Table 7: Model Architecture for GTSRB

Layer Type # of Channels Filter Size Stride Activation
Conv 128 3 1 ReLU
Conv 128 3 1 ReLU

MaxPool 128 2 2 -
Conv 256 3 1 ReLU
Conv 256 3 1 ReLU

MaxPool 256 2 2 -
Conv 512 3 1 ReLU
Conv 512 3 1 ReLU

MaxPool 512 2 2 -
Conv 1024 3 1 ReLU

MaxPool 1024 2 2 -
FC 1024 - - ReLU
FC 10 - - Softmax

Table 8: Model Architecture for VGGFace2

Layer Type # of Channels Filter Size Stride Activation
Conv 64 3 1 ReLU
Conv 64 3 1 ReLU

MaxPool 64 2 2 -
Conv 128 3 1 ReLU
Conv 128 3 1 ReLU

MaxPool 128 2 2 -
Conv 256 3 1 ReLU
Conv 256 3 1 ReLU
Conv 256 3 1 ReLU

MaxPool 256 2 2 -
Conv 512 3 1 ReLU
Conv 512 3 1 ReLU
Conv 512 3 1 ReLU

MaxPool 512 2 2 -
Conv 512 3 1 ReLU
Conv 512 3 1 ReLU
Conv 512 3 1 ReLU

MaxPool 512 2 2 -
FC 4096 - - ReLU
FC 4096 - - ReLU
FC 170 - - Softmax
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Table 9: Dataset and Training Configuration

Task/Dataset # of Labels Input Size Training Set Size Testing Set Size Training Configuration

CIFAR-10 10 32 × 32 × 3 50,000 10,000 inject ratio=0.1, epochs=100, batch=32,
optimizer=Adam, lr=0.001

GTSRB 43 32 × 32 × 3 35,288 12,630 inject ratio=0.1, epochs=25, batch=32,
optimizer=Adam, lr=0.001

BTSR 62 224 × 224 × 3 4,591 2,534 inject ratio=0.1, epochs=25, batch=32,
optimizer=Adam, lr=0.001

VGGFace2 170 224 × 224 × 3 48,498 12,322

inject ratio=0.1, epochs=15, batch=32,
optimizer=Adadelta, lr=0.001

First 10 layers are frozen during training.
First 5 epochs are trained using clean data only.

GAN training algorithm. In this section, we discuss further details of the training algorithm for Generative Adversarial Network mentioned
in Section 3. The details are mentioned in Alg. 1.

Algorithm 1 Training procedure for the image inpainting GAN network (with generator parameters θ ).
Require: The gradient penalty coefficient λ, Adam optimizer hyper-parameters α , β1, β2, the number of discriminator iterations per

generator iteration ncritic, the batch sizem, and the regularization hyperparameter of Generator loss γ .
1: while θ has not converged do
2: for t = 1, ...,ncritic do
3: for i = 1, ...,m do
4: Sample real data x ∼ Pr
5: Generate a maskMc for x with an arbitrary mask at randomized region and shape.
6: Generate a masked input G(x,Mc )

7: Get the inpainted sample x̃ ∼ Pд based on the masked input G(x,Mc ).
8: Update the discriminators D with the joint loss gradients (Eq. 4) using a batch of real data x and inpainted data x̃.
9: Sample a batch of real data x ∼ Pr
10: Generate a maskMc for x with an arbitrary mask at randomized region and shape.
11: Generate masked data G(x,Mc )

12: Get the inpainted samples x̃ ∼ Pд based on the masked inputs G(x,Mc )

13: Update the Generator G with the joint loss gradients (Eq. 6).

C COMPARISONWITH STATE-OF-THE-ART METHODS
We compare ours with recently published state-of-the-art defense methods in the literature as summarized in Table 10. DeepInspect [11],
Fine-pruning [29], ABS [30] and Neural Cleanse [46] work offline, i.e. they will perform Trojan detection in the network and patch it when it
is not actively used; in contrast, Februus is online, removes and patches the inputs at run-time.

STRIP [15], akin to our approach, works in the input domain and at run-time. However, there are some differences in our method compared
with theirs. The first and obvious difference is that this method only detects potential Trojans, while our method cleans the inputs. Hence,
our cleaning method results should be compared with network patching results in Neural Cleanse [46], or DeepInspect [11] defenses since
these methods also attempt to clean the Trojaned effect whilst aiming to achieve state-of-the-art performance from the sanitized network.
The second difference is that our GAN inpainting method is unsupervised, hence, we can utilize a huge amount of cheap unlabeled data to
improve our defense, while other methods rely on ground-truth labeled data—both difficult and expensive to obtain. Third, our method is
robust to Partial Trojan attacks and multiple triggers, two challenging attacks for our counterparts [15, 20, 46]. Notably, Februus can cleanse
the Trojan effects in just a single run (or pass).
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Table 10: Comparison between Februus and other Trojan defense methods

Work
Costly Labeled
Data Required Run-time

DNN
Restoration
Capability

Domain
Against Complex

Partial Backdoor Attacks2
Results

After Restoration1

SentiNet [13] Yes Yes No Input Not Evaluated Not Available

STRIP [15] Yes Yes No Input Not Capable Not Applicable

ABS [30] Yes No No Network Not Capable Not Applicable

DeepInspect [11] No No Yes Network Not Quantitatively
Evaluated

Attack Success: 3%,
Classification Accuracy: 97.1%

Neural Cleanse [46] Yes No Yes Network Not Quantitatively
Evaluated

Attack Success: 0.14%,
Classification Accuracy: 92.91%,
Cannot detect the trigger sizes

larger than 8 × 8

Februus (Ours) No Yes Yes Input Yes
(in just a single run)

Attack Success: 0.00%,
Classification Accuracy: 96.64%,
Can block the Trojan effect
with large trigger size of

16 × 16 (cover 25% of the picture).
1 The comparison is on the GTSRB dataset shared by all methods in respective experimental evaluations. Notably, the classification accuracy of the methods
we compare with are after the model is re-trained using clean labeled data.
2 The methods that discuss potential defenses require adapting their defense mechanisms and knowledge of trojaning implementations; notably, such
information may be difficult to gain in practice.

Figure 15: Robustness of Februus on Different Classification Tasks. Februus is highly effective and perform consistently well against backdoor
attacks. We can observe attack success rate reductions from 100% to nearly 0% while the classification accuracy is maintained in across the
three different classification tasks. Notably, model performance after deploying Februus remains similar to that obtained from benign inputs.
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