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Abstract

Many real-world Bayesian inference problems such as pref-
erence learning or trader valuation modeling in financial mar-
kets naturally use piecewise likelihoods. Unfortunately, ex-
act closed-form inference in the underlying Bayesian graphi-
cal models is intractable in the general case and existing ap-
proximation techniques provide few guarantees on both ap-
proximation quality and efficiency. While (Markov Chain)
Monte Carlo methods provide an attractive asymptotically
unbiased approximation approach, rejection sampling and
Metropolis-Hastings both prove inefficient in practice, and
analytical derivation of Gibbs samplers require exponential
space and time in the amount of data. In this work, we
show how to transform problematic piecewise likelihoods
into equivalent mixture models and then provide a blocked
Gibbs sampling approach for this transformed model that
achieves an exponential-to-linear reduction in space and time
compared to a conventional Gibbs sampler. This enables
fast, asymptotically unbiased Bayesian inference in a new
expressive class of piecewise graphical models and empiri-
cally requires orders of magnitude less time than rejection,
Metropolis-Hastings, and conventional Gibbs sampling meth-
ods to achieve the same level of accuracy.

Introduction
Many Bayesian inference problems such as preference
learning (Guo and Sanner 2010) or trader valuation mod-
eling in financial markets (Shogren, List, and Hayes 2000)
naturally use piecewise likelihoods, e.g., preferences may
induce constraints on possible utility functions while trader
transactions constrain possible instrument valuations. To be
concrete, consider the following Bayesian approach to pref-
erence learning where our objective is to learn a user’s
weighting of attributes for classes of items (e.g., cars, apart-
ment rentals, movies) given their responses to pairwise com-
parison queries over those items:

Example 1 (Bayesian pairwise preference learn-
ing (BPPL)). Suppose each item a is modeled by
an D-dimensional real-valued attribute choice vector
(α1, . . . , αD). The goal is to learn an attribute weight
vector θ = (θ1, . . . , θD) ∈ RD that describes the utility
of each attribute choice from user responses to preference
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queries. As commonly done in multi-attribute utility theory
(Keeney and Raiffa 1993), the overall item utility u(a|θ) is
decomposed additively over the attribute choices of a:

u(a|θ) =
D∑
i=1

θi · αi

User responses are in the form of n queries (i.e. observed
data points) d1 to dn where for each 1 ≤ j ≤ n, dj is a pair-
wise comparison of some items aj and bj with the following
possible responses:

• aj � bj : In the j-th query, the user prefers item aj over bj .
• aj � bj : In the j-th query, the user does not prefer item aj

over bj .

It is assumed that with an elicitation noise 0 ≤ η < 0.5, the
item with a greater utility is preferred:

pr(aj � bj |θ) =

u(aj |θ) < u(bj |θ) : η
u(aj |θ) = u(bj |θ) : 0.5
u(aj |θ) > u(bj |θ) : 1− η

(1)

pr(aj � bj |θ) = 1− pr(aj � bj |θ) (2)

As the graphical model in Figure 1 illustrates, our pos-
terior belief over the user’s attribute weights is pro-
vided by the standard Bayesian inference expression:
pr(θ| d1, . . . , dn) ∝ pr(θ) ·

∏n
j=1 pr(dj |θ). As also evi-

denced in Figure 1, since the prior and likelihoods are piece-
wise distribitions, the posterior distribution is also piecewise
with the number of pieces growing exponentially in n. ♦

Unfortunately, Bayesian inference in models with piece-
wise likelihoods like BPPL in Example 1 (and illustrated in
Figure 1) often lead to posterior distributions with a number
of piecewise partitions exponential in the number of data
points, thus rendering exact analytical inference impossible.
While (Markov Chain) Monte Carlo methods (Gilks 2005)
provide an attractive asymptotically unbiased approxima-
tion approach, rejection sampling and Metropolis-Hastings
(Hastings 1970) both prove inefficient in practice, and an-
alytical derivation of Gibbs samplers (Casella and George
1992) require exponential space and time in the number of
data points.

In this work, we show how to transform problematic
piecewise likelihoods into equivalent mixture models and
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Figure 1: (a) Graphical model for BPPL problem in Example 1. (b) A 2D instance of Example 1: (i) An (unnormalized) prior
uniform in a rectangle with center (0,0). (ii) Likelihood model pr(a1 � b1|θ) and (iii) pr(a2 � b2|θ) (as in Eq. 1) where
a1 = (5, 3), b1 = (6, 2), a2 = a1 and b2 = (6, 3). (iv) A piecewise function proportional to the posterior distribution.

provide a blocked Gibbs sampling approach for this trans-
formed model that achieves an exponential-to-linear re-
duction in space and time compared to a conventional
Gibbs sampler. This enables fast, asymptotically unbiased
Bayesian inference in a new expressive class of piecewise
graphical models and empirically requires orders of magni-
tude less time than rejection, Metropolis-Hastings, and con-
ventional Gibbs sampling methods to achieve the same level
of accuracy – especially when the number of posterior parti-
tions grows rapidly in the number of observed data points.

After a brief introduction to piecewise models and the
exact/asymptotically unbiased inference methods that can
be applied to them in the following section, a novel infer-
ence algorithm (referred to as Augmented Gibbs sampling
throughout) is presented.

Bayesian Inference on Graphical Models with
Piecewise Distributions

Inference. We will present an inference method that can
be generalized to a variety of graphical models with piece-
wise factors, however, our focus in this work is on Bayesian
networks factorized in the following standard form:

pr(θ| d1, . . . , dn) ∝ pr(θ, d1, . . . , dn) = pr(θ) ·
n∏

j=1

pr(dj |θ)

(3)
where θ := (θ1, . . . , θD) is a parameter vector and dj are
observed data points. A typical inference task with this pos-
terior distribution is to compute the expectation of a function
of f(θ) given data:

Eθ[f(θ) | d1, . . . , dn ] (4)

Piecewise Models. We are interested in the inference on
models where prior/likelihoods are piecewise. A function
f(θ) is N-piece piecewise if it can be represented as:

f(θ) =


φ1(θ) : f1(θ)
...
φN (θ) : fN (θ)

(5)

where φ1 to φN are mutually exclusive and jointly exhaus-
tive Boolean functions (constraints) that partition the space

of variables θ. If for a particular variable assignment θ(0)

and 1 ≤ v ≤ N , constraint φv(θ(0)) is satisfied, then by
definition, the function returns the value of its v-th sub-
function: f(θ(0)) = fv(θ

(0)). In this case, it is said that
sub-function fv is activated by assignment θ(0).

In the implementation of our proposed algorithm, the con-
straints are restricted to linear/quadratic (in)equalities while
sub-functions are polynomials with real exponents. How-
ever, in theory, the algorithm can be applied to any family of
piecewise models in which the roots of univariate constraint
expressions can be found and sub-functions (and their prod-
ucts) are integrable.

Complexity of Inference on Piecewise Models. If in the
model of Equation 3, the prior pr(θ) is an L-piece distri-
bution and each of the n likelihoods is a piecewise function
with number of partitions bound by M , then the joint dis-
tribution is a piecewise function with number of partitions
bound by LMn (therefore, O(Mn)). The reason, as clari-
fied by the following simple formula, is that the number of
partitions in the product of two piecewise functions is bound
by the product of their number of partitions:1

φ1(θ) :f1(θ)

φ2(θ) :f2(θ)
⊗

ψ1(θ) :g1(θ)

ψ2(θ) :g2(θ)
=


φ1(θ) ∧ ψ1(θ) :f1(θ)g1(θ)

φ1(θ) ∧ ψ2(θ) :f1(θ)g2(θ)

φ2(θ) ∧ ψ1(θ) :f2(θ)g1(θ)

φ2(θ) ∧ ψ2(θ) :f2(θ)g2(θ)

Exact Inference on Piecewise Models. In theory, closed-
form inference on piecewise models (at least piecewise poly-
nomials) with linear constraints is possible (Sanner and Ab-
basnejad 2012). In practice, however, such symbolic meth-
ods rapidly become intractable since the posterior requires
the representation of O(Mn) distinct case partitions.

Approximate Inference on Piecewise Modes. An al-
ternative option is to seek asymptotically unbiased infer-
ence methods via Monte Carlo sampling. Given a set of

1If pruning potential inconsistent (infeasible) constraint is pos-
sible (i.e. by linear constraint solvers for linear constrains) and the
imposed extra costs are justified, the number of partitions may be
less.
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S samples (particles) {θ(1), . . . ,θ(S)} taken from a poste-
rior pr(θ| d1, . . . , dn), the inference task of Equation 4 can
be approximated by: 1

S

∑S
s=1 f(θ

(s)| d1, . . . , dn). Three
widely used sampling methods for an arbitrary distribution
pr(θ| d1, . . . , dn) are the following:

Rejection sampling: Let p(θ) and q(θ) be two distribu-
tions such that direct sampling from them is respectively
hard and easy and p(θ)/q(θ) is bound by a constant c > 1.
To take a sample from p using rejection sampling, a sample
θ is taken from distribution q and accepted with probability
p(θ)/cq(θ), otherwise it is rejected and the process is re-
peated. If c is too large, the speed of this algorithm is slow
since often lots of samples are required until one is accepted.

Metropolis-Hastings (MH): To generate a Markov Chain
Monte Carlo (MCMC) sample θ(t) from a distribution p(θ)
given a previously taken sample θ(t−1), firstly, a sample θ′

is taken from a symmetric proposal density q(θ|θ(t−1)) (of-
ten an isotropic Gaussian centered at θ(t−1)). With proba-
bility min

(
1, q(θ(t−1)|θ′)p(θ′)/q(θ′|θ(t−1))p(θ(t−1))

)
, θ′ is

accepted θ(t) ← θ′, otherwise, θ(t) ← θ(t−1). Choosing
a good proposal is problem-dependent and requires tuning.
Also most of proposals that often require costly posterior
evaluation is rejected leading to a poor performance.

Gibbs sampling: A celebrated MCMC method in which
generating new samples θ = (θ1, . . . , θD) requires each
variable θi to be sampled conditioned on the last instanti-
ated value of the others:2

θi ∼ p(θi|θ−i) (6)

Computation of D univariate cumulative distribution
functions (CDFs) (one for each p(θi|θ−i)) as well as their
inverse functions is required which can be quite time con-
suming. In practice, when these integrals are not tractable or
easy to compute Gibbs sampling can be prohibitively expen-
sive.

Compared to rejection sampling or MH, the performance
of Gibbs sampling on the aforementioned piecewise models
is exponential in the number of observations. In this work,
we propose an alternative linear Gibbs sampler.

Piecewise Models as Mixture Models
In this section we detail how to overcome the exponen-
tial complexity of standard Gibbs sampling by transform-
ing piecewise models to (augmented) mixture models and
performing linear time Gibbs sampling in the latter models.
While augmented models to facilitate Gibbs sampling have
been proposed previously, e.g., Swendsen-Wang (SW) sam-
pling (Swendsen and Wang 1987) and more recently FlyMC
sampling (Maclaurin and Adams 2014), methods like SW
are specific to restricted Ising models and FlyMC requires
careful problem-specific proposal design and tuning. In this

2This paper deals with piecewise polynomial distributions. For
such distributions, the CDF of p(θi|θ−i) (which is a univariate
piecewise polynomial) is computed analytically. To approximate
CDF−1 which is required for sampling θi (via inverse transform
sampling), in each step of Gibbs sampling binary search is used.

dj

θ

j=1:n

(a)

dj

θ

j=1:n

kj

(b)
Figure 2: (a) A Bayesian inference model with parameter
(vector) θ and data points d1 to dn. (b) A mixture model
with parameter (vector) θ and data points d1 to dn

paper, we present a generic augmented model for an ex-
pressive class of piecewise models and an analytical Gibbs
sampler that does not require problem-specific proposal de-
sign. Furthermore, our Augmented Gibbs proposal achieves
a novel exponential-to-linear reduction in the complexity
of sampling from a Bayesian posterior with an exponential
number of pieces.

We motivate the algorithm by first introducing the aug-
mented posterior for piecewise likelihoods:

pr(θ| d1, . . . , dn) ∝ pr(θ) ⊗
k1 = 1. φ1

1(θ) : f1
1 (θ)

...

k1 = M. φ1
M (θ) :f1

M (θ)

⊗ · · · ⊗


kn = 1. φn1 (θ) : fn1 (θ)

...

kn = M. φnM (θ) :fnM (θ)

In the above, kj is the partition-counter of the j-th likelihood
function. φjv is its v-th constraint and f jv is its associated sub-
function. Also for readability, case statements are numbered
and without loss of generality, we assume the number of par-
titions in each likelihood function is M .

We observe that each kj can be seen as a random variable.
It deterministically takes the value of the partition whose as-
sociated constraint holds (given θ) and its possible outcomes
are in VAL(kj) = {1, . . . ,M}. Note that for any given θ,
exactly one constraint holds for a piecewise function, there-
fore,

∑M
kj=1 pr(kj |θ) = 1. Intuitively, it can be assumed

that kj is the underlying variable that determines which par-
tition of each likelihood function is ‘chosen’. As we have:

pr(dj |θ) =
M∑

kj=1

pr(kj |θ)pr(dj | kj ,θ) (7)

we can claim that a piecewise likelihood function is a mix-
ture model in which sub-functions f jv are the mixture com-
ponents and kj provide binary mixture weights. Hence:

pr(θ| d1, . . . , dn) ∝ pr(θ)⊗
∑
k1

pr(k1|θ)pr(d1| k1,θ)

⊗ · · · ⊗
∑
kn

pr(kn|θ)pr(dn| kn,θ)

∝
∑
k1

. . .
∑
kn

p(θ, d1, . . . , dn, k1, . . . , kn)

This means that the Bayesian networks in Figures 2a and
2b are equivalent. Therefore, instead of taking samples from
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2a, they can be taken from the augmented model 2b. A key
observation, however, is that unlike the conditional distribu-
tions pr(θi|θ−i), in pr(θi|θ−i, k1, . . . , kn) the number of
partitions is constant rather than growing as Mn.

The reason is that if k = (k1, . . . , kn) are given, for the
j-th likelihood a single sub-function f jkj is ‘chosen’ and

pr(θi|θ−i, k1, . . . , kn) ∝ pr(θi|θ−i)
∏n
j=1 f

j
kj
(θ). Since

the sub-functions are not piecewise themselves, the number
of partitions in pr(θi|θ−i, k1, . . . , kn) is bound by the num-
ber of partitions in the prior.

In the following proposition, we prove Equation 7 is valid:
Proposition 1. The following likelihood function:

pr(d|θ) :=


φ1(θ) : f1(θ)

...
φM (θ) : fM (θ)

(8)

is equivalent to
∑M
k=1 pr(k|θ)pr(d| k,θ) where:

pr(k|θ) :=

{
φk(θ) : 1

¬φk(θ) : 0
pr(d| k,θ) := fk(θ) (9)

Proof. Since constraints φk are mutually exclusive and
jointly exhaustive:

M∑
k=1

pr(k|θ) =
M∑
k=1

{
φk(θ) : 1

¬φk(θ) : 0
= 1

Therefore pr(k|θ) is a proper probability function. On the
other hand, by marginalizing k, (9) trivially lead to (8):∑

k

pr(k|θ)pr(d| k,θ) =
M∑
k=1

{
φk(θ) : 1

¬φk(θ) : 0
· fk(θ), by (9)

=

M∑
k=1

{
φk(θ) :fk(θ)

¬φk(θ) :0
=


φ1(θ) :f1(θ)
...
φM (θ) :fM (θ)

= pr(d|θ) by (8)

in which the third equality holds since constraints φk are
mutually exclusive.

Deterministic Dependencies and Blocked Sampling
It is known that in the presence of determinism Gibbs sam-
pling gives poor results (Poon and Domingos 2006). In our
setting, deterministic dependencies arise from the definition
of pr(k|θ) in (9), were the value of k is decided by θ. This
problem is illustrated in Figure 3 by a simple example: A
Gibbs sampler started from an initial point O = (θ

(0)
1 , θ

(0)
2 ),

is trapped in the initial partition (A). The reason is that con-
ditioned on the initial value of the auxiliary variables, the
partition is deterministically decided as being (A), and con-
ditioned on any point in (A), the auxiliary variables keep
their initial values.
Blocked Gibbs. We avoid deterministic dependencies by
Blocked sampling: at each step of Gibbs sampling, a param-
eter variable θi is jointly sampled with (at least) one auxil-
iary variable kj conditioned on the remaining variables:

(θi, kj) ∼ pr(θi, kj |θ−i, k−j)

This is done in 2 steps:

θ1

θ2 Ⓑ Ⓖ

Ⓕ

ⒺⒶ Ⓓ

Ⓒ

x
o

y

k1 k2
k3 k4

θ2
(0)

θ1
L θ1

Uθ1
(0)

Figure 3: A piecewise joint distribution of (θ1, θ2) parti-
tioned by bi-valued linear constraints. In the side, speci-
fied by each arrow, its associated auxiliary variable kj is 1
otherwise 2. A Gibbs sampler started from an initial point
O = (θ

(0)
1 , θ

(0)
2 ), is trapped in an initial partition (A) where

k1 = k2 = k3 = 2 and k4 = 1.

1. kj is marginalized out and θi is sampled (collapsed Gibbs
sampling):

θi ∼
∑
kj

pr(kj |θ−i, k−j)pr(θi| kj ,θ−i, k−j)

2. The value of kj is deterministically found given θ:
kj ← v ∈ VAL(kj) s.t. φjv(θ) = true where φjv is the v-th
constraint of the j-th likelihood function.
For instance in Figure 3, if for sampling θ2, k1 (or k2)

is collapsed, then the next sample will be in the union of
partition (A) and (B) (resp. the union of (A) and (C)).

Targeted Selection of Collapsed Auxiliary Variables. We
provide a mechanism for finding auxiliary variables kj that
are not determined by the other auxiliary variables, k−j
when jointly sampled with a parameter variable θi. We ob-
serve that the set of partitions satisfying the current valuation
of k often differs with its adjacent partitions in a single aux-
iliary variable. Since such a variable is not determined by
other variables, it can be used in the blocked sampling.

However, in case some likelihood functions share the
same constraint, some adjacent partitions would differ in
multiple auxiliary variables. In such cases, more than one
auxiliary variable should be used in blocked sampling.

Finding such auxiliary variables has a simple geometric
interpretation. As such, we explain it by a simple exam-
ple depicted in Figure 3. Consider finding a proper kj for
blocked sampling pr(θ1, kj | θ(0)2 ,k−j). It suffices to pass the
end points of the (red dotted) line segment pr(θ1| θ(0)2 ,k) >
0 by an extremely small value ε to end in points x =

(θL1 , θ
(0)
2 ) and y = (θU1 , θ

(0)
2 ) in partitions (B) and (C).3 In

this way, the neighboring partitions and consequently their
corresponding k valuations are detected. Finally, the auxil-
iary variables that differ between (A) and (B) or differ be-
tween (A) and (C) are found (k1 and k2, in Figure 3).

Experimental Results
In this section we show that the mixing time of the proposed
method, augmented Gibbs sampling, is faster than Rejection

3More generally, θLi := inf{θi | p(θi|θ−i, k) > 0} − ε and
θUi := sup{θi | p(θi|θ−i, k) > 0}+ ε where 0 < ε� 1.
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Figure 4: Market Maker problem of Example 2. (a) Prior dis-
tribution of two instrument types (therefore, a 2D space). (b)
Corresponding posterior given 4 observed data points (trader
responses).

sampling, baseline Gibbs and MH. Algorithms are tested
against the BPPL model of Example 1 and a Market maker
(MM) model motivated by (Das and Magdon-Ismail 2008):
Example 2 (Market maker (MM)). Suppose there are
D different types of instruments with respective valuations
θ = (θ1, . . . , θD). There is a market maker who at each
time step t deals an instrument of type τt ∈ {1, . . . , D}
by setting bid and ask bt and at denoting prices at which
she is willing to buy and sell each unit respectively (where
bt ≤ at). The “true” valuation of different types are un-
known (to her) but any a priori knowledge over their depen-
dencies that can be expressed via a DAG structure over their
associated random variables is permitted. Nonetheless, with-
out loss of generality we only consider the following simple
dependency: Assume the types indicate different versions of
the same product and each new version is more expensive
than the older ones (θi ≤ θi+1). The valuation of the oldest
version is within some given price range [L,H] and the price
difference of any consecutive versions is bound by a known
parameter δ:

pr(θ1) = U(L,H)

pr(θi+1) = U(θi, θi + δ) ∀i ∈ {1, . . . , D − 1}

where U(·, ·) denotes uniform distributions. At each time-
step t, a trader arrives. He has a noisy estimation θ̃t of
the actual value of the presented instrument τt. We assume
pr(θ̃t|θ, τt = i) = U(θi− ε, θi+ ε). The trader response to
bid and ask prices at and bt is dt in {BUY, SELL,HOLD}. If
he thinks the instrument is undervalued by the ask price (or
overvalued by the bid price), with probability 0.8, he buys it

(resp. sells it), otherwise holds.

pr(BUY | θ̃t, at, bt) =
{
θ̃t < at : 0

θ̃t ≥ at : 0.8

pr(SELL | θ̃t, at, bt) =
{
θ̃t ≤ bt : 0.8
θ̃t > bt : 0

pr(HOLD | θ̃t, at, bt) =
{
bt < θ̃t < at : 1

θ̃t ≤ bt ∨ θ̃t ≥ at : 0.2

Based on traders’ responses, the market maker intends to
compute the posterior distribution of the valuations of all in-
strument types. To transform this problem (with correspond-
ing model shown in Figure 4a) to the model represented
by Equation 3, variables θ̃t should be marginalized. For in-
stance:

pr(BUY |θ, at, bt, τt) =

∫ ∞
−∞
pr(BUY | θ̃t, at, bt) · pr(θ̃t | θ, τt)dθ̃t

=

∫ ∞
−∞

θ̃t < at : 0

θ̃t ≥ at : 0.8
⊗

θτt−ε ≤ θ̃t ≤ θτt+ε : 1
2ε

θ̃t<θτt−ε ∨ θ̃t>θτt+ε : 0
dθ̃t

=


θτt ≤ at − ε : 0

at−ε < θτt ≤ at+ε : 0.4(1+
θτt−at

ε )

θτt > at + ε : 0.8

♦
Models are configured as follows: In BPPL, η = 0.4 and

prior is uniform in a hypercube. In MM, L = 0, H = 20,
ε = 2.5 and δ = 10.

For each combination of the parameter space dimension-
ality D and the number of observed data n, we generate
data points from each model and simulate the associated ex-
pected value of ground truth posterior distribution by run-
ning rejection sampling on a 4 core, 3.40GHz PC for 15
to 30 minutes. Subsequently, using each algorithm, particles
are generated and based on them, average absolute error be-
tween samples and the ground truth, ||E[θ]− θ∗||1, is com-
puted. The time till the absolute error reaches the threshold
error 3.0 is recorded. For each algorithm, three independent
Markov chains are executed and the results are averaged.
The whole process is repeated 15 times and the results are
averaged and standard errors are computed.

We observe that in both models, the behavior of each al-
gorithm has a particular pattern (Figure 5). The speed of re-
jection sampling and consequently its mixing time deteri-
orates rapidly as the number of observations increases.The
reason is that by observing new data, the posterior density
tends to concentrate in smaller areas, leaving most of the
space sparse and therefore hard to sample from by rejection
sampling.

It is known that the efficiency of MH depends crucially on
the tuning of the proposal. We carefully tuned MH to reach
the optimal acceptance rate of 0.234 (Roberts, Gelman, and
Gilks 1997). The experimental results show that MH is scal-
able in observations but its mixing time increases rapidly
as the dimensionality increases. These results are rather sur-
prising since we expected that as an MCMC, MH does not
suffer from the curse of dimensionality as rejection sampling
does. A reason may be that piecewise distributions can be
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Figure 5: Performance of Rejection/Metropolis-Hastings, baseline and augmented Gibbs on (a) & (b) BPPL and (c) & (d) MM
models against different configurations of the number of observed data and the dimensionality of the parameter space. Apart
from low data size and/or dimensionality, in almost all cases, Augmented Gibbs takes orders of magnitude less time to achieve
the same error as the other methods and this performance separation from competing algorithms increases in many cases with
both the data size and dimensionality.

non-smooth or broken (see Figure 4) which is far from the
characteristics of the Gaussian proposal density used in MH.

Efficiency of the baseline Gibbs sampling in particular de-
creases as data points increase since this leads to an expo-
nential blow-up in the number of partitions in the posterior
density. On the other hand, Augmented Gibbs is scalable in
both data and dimension for both models. Interestingly, its
efficiency even increases as dimensionality increases from 2
to 5 — the reason may be that proportional to the total num-
ber of posterior partitions, in lower dimensions the neigh-
bors of each partition are not as numerous. For instance, re-
gardless of the number of observed data in the 2 dimensional
BPPL, each partition is neighbored by only two partitions
(see Figure 1) leading to a slow transfer between partitions.
In higher dimensions however, this is not often the case.

Conclusion
In this work, we showed how to transform piecewise likeli-
hoods in graphical models for Bayesian inference into equiv-
alent mixture models and then provide a blocked Gibbs sam-

pling approach for this augmented model that achieves an
exponential-to-linear reduction in space and time compared
to a conventional Gibbs sampler. Unlike rejection sampling
and baseline Gibbs sampling, the time complexity of the
proposed Augmented Gibbs method does not grow expo-
nentially with the amount of observed data and yields faster
mixing times in high dimensions than Metropolis-Hastings.

Future extensions of this work can also examine appli-
cation of this work to non-Bayesian inference models (i.e.,
general piecewise graphical models). For example, some
clustering models can be formalized as piecewise mod-
els with latent cluster assignments for each datum – the
method proposed here allows linear-time Gibbs sampling
in such models. To this end, this work opens up a variety
of future possibilities for efficient asymptotically unbiased
(Bayesian) inference in expressive piecewise graphical mod-
els that to date have proved intractable or inaccurate for ex-
isting (Markov Chain) Monte Carlo inference approaches.
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