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Abstract

The promise of active learning (AL) is to reduce labelling
costs by selecting the most valuable examples to annotate
from a pool of unlabelled data. Identifying these examples
is especially challenging with high-dimensional data (e.g.
images, videos) and in low-data regimes. In this paper, we
propose a novel method for batch AL called ALFA-Mix. We
identify unlabelled instances with sufficiently-distinct fea-
tures by seeking inconsistencies in predictions resulting from
interventions on their representations. We construct interpo-
lations between representations of labelled and unlabelled
instances then examine the predicted labels. We show that
inconsistencies in these predictions help discovering features
that the model is unable to recognise in the unlabelled in-
stances. We derive an efficient implementation based on a
closed-form solution to the optimal interpolation causing
changes in predictions. Our method outperforms all recent
AL approaches in 30 different settings on 12 benchmarks of
images, videos, and non-visual data. The improvements are
especially significant in low-data regimes and on self-trained
vision transformers, where ALFA-Mix outperforms the state-
of-the-art in 59% and 43% of the experiments respectively1.

1. Introduction
The success of machine learning applications depends

on the quality and volume of the annotated datasets. High
quality data annotations can be slow and expensive. Ac-
tive learning (AL) aims to actively select the most valuable
samples to be labelled in the training process iteratively, to
boost the predictive performance. A popular setting called
batch AL [34] fixes a budget on the size of the batch of
instances to be sent to an oracle for labelling. The process
is repeated over multiple rounds, allowing the model to be
updated iteratively. The core challenge is therefore to iden-
tify the most valuable instances to be included in this batch
at each round, depending on the current model.

1The code is available at https : / / github . com /
aminparvaneh/alpha_mix_active_learning
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Figure 1. We propose to form linear combinations (i.e. interpola-
tions or mixing) of the features of an unlabelled instance (middle
image) and of labelled ones (top and bottom images). The interpo-
lated features are passed through the current classifier. We show
that inconsistencies in the predicted labels indicate that the unla-
belled instance may have novel features to learn from.

Various AL strategies have been proposed differing in
predicting (1) how informative a particular unlabelled in-
stance will be (i.e. uncertainty estimation [12, 15, 31, 38]) or
(2) how varied a set of instances will be (i.e. diversity estima-
tion [33,39]), or both [2,17,19]. Recent deep learning based
AL techniques include, for example, the use of an auxiliary
network to estimate the loss of unlabelled instances [40],
the use of generative models like VAEs to capture distribu-
tional differences [20,35], and the use of graph convolutional
networks to relate unlabelled and labelled instances [5].

Despite much progress made, current AL methods still
struggle when applied to deep neural networks, with high-
dimensional data, and in a low-data regime. We hypoth-
esised that the representations learned within deep neural
networks may be leveraged to reason about the model’s un-
certainty while alleviating the challenges associated with
high-dimensional data. Some existing methods only con-
sider the model’s output, but we believe that this cannot
convey a complete picture of the model’s current state. As-
sessing the uncertainty in the model is particularly important
in a low-data regime since the number of available training
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(a) ALFA-Mix (ours) (b) CDAL (ECCV 2020) [2] (c) BADGE (ICLR 2020) [3]

(d) GCNAL (CVPR 2021) [5] (e) CoreSet (ICLR 2018) [33] (f) BALD (ICML 2017) [15]
Figure 2. Visualization of sample selection behaviours of various AL methods in the latent space (see the Appendix for additional
methods). The larger dots represent the selected samples to label; smaller dots represent unlabelled ones. Our approach finds a candidate
set (demonstrated by stars in 2a) of unlabelled instances with inconsistencies in their label prediction when interpolated with labelled
representations. It selects a diverse set of samples lying close to the all four borders for the labelling (with three zoom-in windows). The
demonstration problem is that of identifying 4 classes from MNIST (illustrated above by 4 colours) using a MLP. An initial training set of
200 randomly selected points and their labels was provided, with each method given a budget of 200 additional labels. The features are
projected to two-dimensions for visualization.

examples is small. This motivation has led to methods like
BADGE [3] which uses gradients through the classifier layer
of the network. Besides its relatively poor performance in lo-
data regimes [3], the drawback is a high computational cost
due to the high dimensionality of the gradient embeddings,
making the method impractical for deep models with latent
representations of high dimensions, large datasets, and large
numbers of classes.

In this paper, we present a novel and efficient AL method,
named Active Learning by FeAture Mixing (ALFA-Mix),
based on the manipulation of latent representations of the
data. We identify informative unlabelled instances by eval-
uating the variability of the labels predicted for perturbed
versions of these instances. These perturbed versions are
instantiated in feature space as convex combinations of unla-
belled and labelled instances (see Figure 1). This approach
effectively explores the neighbourhood surrounding an un-
labelled instance by interpolating its features with those of
previously-labelled ones. Convex combinations of features
have been already used in other contexts such as data aug-
mentation, using random interpolations [36, 37, 41, 42] or
actual solutions to an optimisation problem [1, 29].

We provide a theoretical support for the method. In par-
ticular, under a norm-constraint on the interpolation ratio,
we show that the interpolation is equivalent to considering
(1) the difference between the features of the unlabelled

instance and the labelled ones and (2) the gradient of the
model w.r.t the features at the unlabelled point. Discovering
new features considering (1) and (2) leads us to finding an
optimal interpolated point deterministically, at a minimal
computing cost. Rather than using all the labelled data for
these interpolations, we choose a subset we call anchors to
capture the common features for each class. Subsequently,
we construct a candidate set by choosing the instances from
the unlabelled set that when mixed with these anchors lead to
a change in the model’s prediction for those instances. Then,
to ensure selected instances are diverse, we perform a simple
clustering in the candidate set and choose their centroids as
the points to be queried.

The contributions of this paper are as follows.

• Instead of interrogating an unlabelled instance directly,
we interpolate its representation features from the labelled
instances to uncover its hidden traits. To the best of our
knowledge, it is the first of its kind in AL. Unlike existing
methods that reply solely on the predicted output, we har-
ness useful information from the feature representations
as an indication of which features are novel for the model.

• We show that optimal interpolation/mixing for each in-
stance that underscores the novel features with which
the model could change prediction, has a closed-form
solution making our approach efficient and scalable.

• We show that our approach outperforms its counterparts



over 9 image, 2 OpenML, and one video datasets in var-
ious settings of architecture, network initialisation, and
budget choice. Our approach consistently achieves higher
accuracy than existing methods, with particularly signifi-
cant gains in a low-data regime.

• We provide the first investigation into using AL in vision
transformers: we demonstrate the effectiveness of ALFA-
Mix on a self-trained vision transformer [6], performing
better than random selection in all tests, and 43% better
than the state-of-the-art. In addition, our approach per-
forms significantly better that its counterparts for video
classification using transformers [14].

2. Related Work
Active learning strategies can be broadly categorised into

three types: diversity-based, uncertainty-based, and hybrid
sampling, according to the nature of their acquisition func-
tion. Diversity-based approaches aim to select samples that
best represent the whole of the available unlabelled set. A
variety of approaches have been proposed that cluster the
unlabelled samples based on feature representations [39],
or construct a core-set over the latent features to identify a
suitably diverse set of samples [33].

Uncertainty-based methods seek to identify the unlabelled
samples that are most ambiguous to the current model that
has been trained over the present labelled set based on the
target objective function. The assumption here is that having
these uncertain samples labelled will add the most value to
the next model training round. Entropy and the confidence
of the predictions [38], the margin between the confidence
of the highest and second highest predicted classes [31],
the information gain in the model parameters in a Bayesian
framework [15], and the variance between the predicted
probabilities within the ensemble [4] have all been proposed
as measures of uncertainty. These methods favour points
that lie close to the decision boundary, but as they rely en-
tirely on the predicted class likelihoods they ignore the value
of the feature representation itself. The closest method to
that which we propose here is the deep fool attack learning
(DFAL) approach [12] where the distance to the decision
boundary is approximated by perturbation, using techniques
originally developed for adversarial attacks [28]. Adver-
sarial examples may expose vulnerability of the network
architecture to particular patterns in the input rather than
the distribution of the labels over latent space. That may
lead to incorrect selection of instances that have patterns that
are easily manipulated rather than helping to shape a more
consistent decision boundary. Random perturbations are un-
likely to lie within the true data distribution, and thus risk
wasting labelling cost on feature values that can never arise
in practice. Rather than repeatedly adding random noise in
the input space, the method we propose here (ALFA-Mix)
interpolates in latent space. ALFA-Mix is not only faster, it

also significantly outperforms the DFAL approach.
Recently, a series of model-based active learning have

been developed whereby a separate model is trained for
active instance selection. Various objectives, either task-
agnostic (e.g. variational adversarial active learning [35],
graph convolutional active learning [5]) or task-aware (e.g.
target loss prediction [40]), have been proposed as for train-
ing these models. Additionally, [8] has married model-based
algorithms with conventional ones by combining a varia-
tional Bayes network with feature representations from the
target model. In addition to sensitivity to hyper-parameters
and additional computational cost, these AL methods do
not consider the diversity of the selected samples and are
prone to selecting samples with repetitive patterns. More-
over, our experiments show their poor performances in low-
data regime.

Hybrid AL methods exploit both diversity and uncertainty
in their sample selection methodologies. A mini-max strat-
egy was proposed in [19], for example, that maximises both
the informativeness and representativeness of the samples.
Interestingly, a method that learns to combine different AL
strategies was presented in [17]. Additionally, [2] exploits
the predicted probabilities in images to select samples from
diverse contexts (i.e. images of objects with varied back-
grounds). Recently, [3] proposed to cluster the gradients of
the final output layer of the target model as the features of the
unlabelled samples that implicitly encompass the uncertainty
information. Despite their state-of-the-art results on some
image and non-image datasets, their approach is not scalable
to larger tasks with numerous number of classes. Our ap-
proach not only consistently outperforms their method by
a large margin in different settings, but it also is extremely
efficient and scalable to large tasks.

3. Methodology
3.1. Problem Definition

Without loss of generality, we consider our learning ob-
jective to be training a supervised multiclass classification
problem with K classes. A learner is actively trained in
iterations of interactions with an oracle. At each iteration,
this active learner has access to a small set of labelled data
Dl = {(xi, yi)}Mi=0 where xi ∈ X represents the input (e.g.
an image or a video clip) and yi ∈ {1, . . . ,K} stands for the
associated class label. The learner also has access to a set of
unlabelled data Du from which B number of instances are
chosen to be labelled by the oracle. The labelled samples are
then added to Dl to update the model. The performance of
the model is evaluated on an unseen test dataset.

The learner is a deep neural network f = fc ⊙ fe pa-
rameterised by θ = {θe,θc}. Here, fe : X → RD is the
backbone which encodes the input to a D-dimensional rep-
resentation in a latent space, i.e. z = fe(x;θe). Further, fc :
RD → RK is a classifier e.g. multi-layer perceptron (MLP)



that maps the instances from their representations to their
corresponding logits which can be converted to class like-
lihoods by p(y | z;θ) = softmax(fc(z;θc)). We optimise
the parameters end-to-end by minimising the cross-entropy
loss over the labelled set: E(x,y)∼Dl [ℓ(fc ⊙ fe(x;θ), y)].
The prediction of the label (i.e. pseudo-label) for an unseen
instance is y∗z = argmaxy f

y
c (z;θc) where z = fe(x;θe)

and fy
c is the logit output for class y. Additionally, the logit

of the predicted label is denoted as f∗
c (z) := f

y∗
z

c (z)2. We
also denote Zu = {fe(x),∀x ∈ Du} the set for representa-
tions of the unlabelled data and Zl its labelled counterpart.
We compute the average representation z⋆ of the labelled
samples per class, and call it anchor. The anchors for all
classes form the anchor set Z⋆, and serve as representatives
of the labelled instances.
3.2. Feature Mixing

The characteristics of the latent space plays a crucial role
in identifying the most valuable samples to be labelled. Our
intuition is that the model’s incorrect prediction is mainly
due to novel "features" in the input that are not recognisable.
Thus, we approach the AL problem by first probing the
features learned by the model. To that end, we use a convex
combination (i.e. interpolation) of the features as a way to
explore novel features in the vicinity of each unlabelled
point. Formally, we consider our interpolation between the
representations of the unlabelled and labelled instances, zu

and z⋆ respectively (we use the labelled anchor here for
efficiency) as z̃α = αz⋆+(1−α)zu using an interpolation
ratio α ∈ [0, 1)D. This process can be seen as a way of
sampling a new instance without explicitly modelling the
joint probability of the labelled and unlabelled instances
[1, 24, 29, 41], i.e.

z ∼ p(z | zu,Z⋆,α) ≡ αz⋆ + (1−α)zu, z⋆ ∼ Z⋆. (1)

We consider interpolating an unlabelled instance with all
the anchors representing different classes to uncover the
sufficiently distinct features by considering how the model’s
prediction changes. For that, we investigate the change in
the pseudo-label (i.e. y∗) for the unlabelled instance and
the loss incurred with the interpolation. We expect that a
small enough interpolation with the labelled data should not
have a consequential effect on the predicted label for each
unlabelled point.

Using a first-order Taylor expansion w.r.t. zu, the model’s
loss for predicting the pseudo-label of an unlabelled instance
at its interpolation with a labelled one can be re-written as3:

ℓ (fc (z̃α) , y
∗) ≈ ℓ (fc(z

u), y∗)+ (2)
(α(z⋆ − zu))

⊺
.∇zuℓ (fc (z

u) , y∗) ,

2For brevity, when the parameters θe and θc are clear from the context,
we refrain from explicitly including them.

3This statement is true for any given instance and any convex com-
bination of points in the latent space. For AL, we particularly focus on
unlabelled instances though. More details are provided in the Supplements.

which for a sufficiently small α, e.g. ∥α∥ ≤ ϵ is almost
exact. Consequently, for the full labelled set, by choosing
the max loss from both sides we have:

max
z⋆∼Z⋆

[ℓ (fc (z̃α) , y
∗)]− ℓ (fc(z

u), y∗) ≈ (3)

max
z⋆∼Z⋆

[(α(z⋆ − zu))
⊺
.∇zuℓ (fc (z

u) , y∗)] .

Intuitively, when performing interpolation, the change in
the loss is proportionate to two terms: (a) the difference of
features of z⋆ and zu proportionate to their interpolation α,
and (b) the gradient of the loss w.r.t the unlabelled instance.
The former determines which features are novel and how
their value could be different between the labelled and un-
labelled instance. On the other hand, the later determines
the sensitivity of the model to those features. That is, if the
features of the labelled and unlabelled instances are com-
pletely different but the model is reasonably consistent, there
is ultimately no change in the loss, and hence those features
are not considered novel to the model.

The choice of α is input specific and determines the
features to be selected. As such, in Sec 3.3 we introduce
a closed form solution for finding a suitable value for α.
Finally, we note that the interpolations utilised here have
some interesting properties that are further discussed in the
supplements.

3.3. Optimising the Interpolation Parameter α

Since manually choosing a value for α is non-trivial,
we devise a simple optimisation approach to choose the
appropriate value for a given unlabelled instance. To that
end, we note that, as observed from Eq. (3), the worst case
of maximum change in the loss is when we choose α that
maximises the loss at the interpolation point (details are in
the supplement). However, using the r.h.s of the Eq. (3), we
devise the objective for choosing α as:

α∗ = argmax
∥α∥≤ϵ

(α(z⋆ − zu))
⊺
.∇zuℓ(fc(z

u), y∗), (4)

where ϵ is a hyper-parameter governing the magnitude of
the mixing. Intuitively, this optimisation chooses the hardest
case of α for each unlabelled instance and anchor. We
approximate the solution to this optimisation using dual
norm formulation, which in the case of using 2-norm yields:

α∗ ≈ ϵ
∥(z⋆ − zu)∥2∇zuℓ(fc(z

u), y∗)

∥∇zuℓ(fc(zu), y∗)∥2
⊘ (z⋆ − zu), (5)

where ⊘ represents element-wise division (further details
in the Supplement). This approximation makes the optimi-
sation of the interpolation parameter efficient and our ex-
periments show that it will not have significant detrimental
effects on the final results compared to directly optimising
for α to maximise the loss.



Algorithm 1: Our active learning algorithm.

Inputs: initial labelled set Dl; unlabelled pool Du;
labelling budget at each round B; mixing parameter ϵ;
for i = 1 to max_rounds do

Train the model f using the labelled data Dl.
Initialise Z⋆ based on the representations of Dl.
I = {}.
for xu ∈ Du do

zu = fe(x
u).

for z⋆ ∈ Z⋆ do
Calculate α∗ using ϵ and Eq. 5.
z̃ = α∗z⋆ + (1−α∗)zu.
if argmaxy(f

y
c (zu)) ̸= argmaxy(f

y
c (z̃) )

then
I = I ∪ (xu, zu).
Break

Cluster the samples in I into B clusters.
Select samples at the centre of each cluster (C).
Y new = Query(C).
Dl = Dl ∪ (C, Y new), Du = Du \ C.

3.4. Candidate Selection
For AL it is reasonable to choose instances to be queried

whose loss substantially change with interpolation according
to Eq. (3). This corresponds to those instances for which
the model’s prediction change and have novel features. Intu-
itively, as depicted in Figure. 2a, these samples are placed
close to the decision boundary in the latent space. Alter-
natively, we expect a small interpolation should not affect
the model’s loss when it is reasonably confident in its recog-
nition of the features of the input. We, then, create our
candidate set as:

I =

{
zu ∈ Zu

∣∣∣∣ ∃z⋆ ∈ Z⋆, f∗
c (z̃α) ̸= y∗

zu

}
. (6)

The size of the selected set I could potentially be larger
than the budget B. In addition, ideally we seek diverse sam-
ples since most instances in I could be chosen from the
same region (i.e. they might share the same novel features).
To that end, we propose to cluster the instances in I into B
groups based on their feature similarities and further choose
the closest samples to the centre of each cluster to be labelled
by oracle. This ensures the density of the space represented
by I samples, is reasonably approximated using B instances.
We simply use k-MEANS which is widely accessible. Simi-
lar strategy is also used by [3] to encourage diversity. Our
approach is summarised in Algorithm 1.

4. Experiments and Results
4.1. Baselines

We compare ALFA-Mix with the following AL baselines:
–Random: a simple baseline that randomly selects B sam-

ples from the unlabelled pool at each round.
–Entropy [38]: A conventional AL approach that picks

unlabelled instances with highest entropy.

–BALD [15]: An uncertainty model relying on Bayesian
approaches that selects a set of samples with the highest
mutual information between label predictions and posterior
of the model approximated using dropout (Figure 2f).

–Coreset [33]: An approach based on the core-set technique
that chooses a batch of diverse representative samples of
the whole unlabelled set (Figure. 2e).

–Adversarial Deep Fool [12]: An uncertainty method that
utilises deep fool attacks to select a batch of unlabelled
samples whose predictions flip with small perturbations.

–GCNAL [5]: A model-based approach that learns a graph
convolutional network to measures the relation between
labelled and unlabelled instances (Figure. 2d)4.

–BADGE [3]: A hybrid approach that queries the centroids
obtained from the clustering of the gradient embeddings
(Figure. 2c).

–CDAL [2]: A hybrid approach that exploits the contextual
information in the predicted probabilities to choose samples
with varied contexts (Figure. 2b)

4.2. Experiment Settings
Setting and Datasets: We conducted a comprehensive set
of experiments in 30 different settings on multiple datasets
to evaluate how ALFA-Mix compares to its counterparts. We
define an AL setting as a combination of a specific dataset,
a limited set of initial labelled samples, a particular type of
deep neural network, a limited number of AL rounds, and a
fixed labelling budget (batch) for each round.

Specifically, we experimented on MNIST [23], EM-
NIST [9], CIFAR10 [21], CIFAR100 [21], Mini-
ImageNet [32], DomianNet-Real [30] as well as two subsets
of DomainNet-Real for image datasets. Additionally, we
extended our experiments to two more non-visual datasets
from the OpenML5 repository. Furthermore, to reveal the
effectiveness of each AL method in different data regimes,
we utilised both small (10×K ) and large (100×K) budget
sizes. More importantly, the network architecture and its
initial parameters are two more factors that we considered
in our experiments. As for the choice of the architecture,
we employed different common deep neural networks; in-
cluding Multi-Layer Perceptron (MLP) [3], ResNet-18 [16],
DenseNet-121 [18], as well as Vision Transformers [11].
Regarding the network initialisation, we considered three
scenarios where at the start of each AL round6, the param-
eters are initialised randomly, from the model trained in
the previous round (denoted as "Continue" in Figure. 3),
or using pre-trained models (either from supervised or self-
supervised [6] pre-training on ImageNet [10]). Please find
for more details in the Appendix.

4We employed CoreGCN variation in our experiments as results reported
in [5] show its superiority over the UncertainGCN version.

5https://www.openml.org
6After a new batch of samples are selected by AL method and added to

the labelled set and before the model training.

https://www.openml.org
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Figure 3. A summary of the performance of our proposed AL method (ALFA-Mix) compared with state-of-the-art across all the 30 settings
considered. Each bar represents the percentage of AL rounds in which our approach outperforms others (lower indicates stronger baseline).
It is worth noting that our approach (ALFA-Mix) under-performs others in close to zero cases.

We followed the supervised training setting proposed
in [3] and optimised the network using all the labelled set
(without any validation set) based on a cross-entropy loss and
an Adam optimiser with a learning rate of 1e− 3 and 1e− 4
for image and non-image datasets, respectively. Similarly,
we continued the training using a batch size of 64 until
the model reaches a certain early stopping condition (i.e.
reaching a training accuracy above 99% [3]).

We set the number of rounds for each setting to 10, ex-
cept for DomainNet-Real where we continue for 5 rounds.
Additionally, to eliminate the effect of randomness in the
results, we repeated each experiment 5 times with different
random seeds. To have a better understanding about the
performance of each method, in addition to the quantitative
results, we provided the penalty matrix [3] that facilitates the
pairwise comparisons between different approaches across
all the settings.
Video classification: Since video classification is a more
challenging task with higher annotation cost, we compare the
AL performance on video classification tasks. All the exper-
iments are conducted on HMDB [22], a widely used dataset
consisting of 5,412 training videos belonging to 51 classes
representing different actions. For each video, we randomly
sampled a video clip with 32 frames of size 224× 224 using
a temporal stride of 2. Regarding the network architecture,
we employed the state-of-the-art Multi-Scale Vision Trans-
former (MViT) backbone pre-trained on Kinetics-600 [7].
Starting with a labelled set consisting of two labelled in-
stances from each class (a total of 102 video clips), we
provide each AL method with budget of the varied sizes
(2×K, 4×K, 7×K and 15×K) in the next AL rounds.
At each AL round, we train the network for 50 epochs with
a batch size of 8 using AdamW [27] optimiser with a base
learning rate of 1e− 4 that warms up linearly for the first 30
epochs and then decays to 5e−5 for the rest of the iterations
using a cosine scheduler [26]. We repeated each experiment
twice to cancel out the effect of random selection of the
initial labelled set.

4.3. Overall Results
Image and non-image results. In Figure. 4 we summarise
all the results across various datasets, budget sizes and ar-
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Figure 4. Pairwise comparison [3] of different approaches. Lower
values shown at each column reveal the better performances of that
AL method across all the experiments. Maximum value of each
cell is 30, which represents the number of experimental settings.

chitectures (30 different settings in total) for image and non-
image tasks into a matrix C. While each element Ci,j in the
matrix reveals in how many experiments the method shown
in row i outperforms the one in column j in terms of accu-
racy of an unseen test set (higher is better for the approach
shown in the row). The last row indicates the average number
of experiments in which the method in the column has been
outperformed by others (lower is better). The maximum
value for each cell in the matrix is 30. This matrix clearly
shows the superior performance of our approach compared
to the baselines. In particular, we outperform CDAL [2] and
BADGE [3] in a significant number of experiments (12.3
and 10.6 out of 30, respectively) but ours under-performed
in only 0.3 of the times. Generally as shown in the last col-
umn, our approach is rarely outperformed (lower than 0.3).
In other words, except in 3 AL rounds, for the rest of 282
ones (around 99% of the rounds), our approach is capable
of matching or outperforming the best-performing baselines
(BADGE and CDAL).

Video Classification results. Table. 1 summarises the results
for applying various AL methods for the activity recognition



200 400 600 800 1000
#Labels

75.0

77.5

80.0

82.5

85.0

87.5

90.0

92.5

Te
st

 A
cc

ur
ac

y 
(%

)

Random
Entropy
BALD
CoreSet

GCNAL
CDAL
BADGE
Ours

(a) MNIST (MLP)

0 2000 4000 6000 8000 10000
#Labels

68

70

72

74

76

78

80

(b) MiniImageNet (ViT-Small)

0 5000 10000 15000
#Labels

68

70

72

74

76

78

(c) DomainNet-Real (ViT-Base)
Figure 5. Test accuracy plots across some of the employed settings. Each experiment has been repeated 5 times.

AL Rounds

Method 204* 408 765 1530

MViT (initial accuracy with 102 instances: 50.9±1.2)
Random 56.7±1.4 64.1±1.2 72.0±1.1 75.3±0.4

Entropy [38] 55.5±0.6 65.5±0.3 70.2±2.0 76.5±0.7

BALD [15] 56.7±0.4 65.5±0.6 72.4±1.3 76.6±1.8

CoreSet [33] 59.3±1.3 65.8±1.2 72.8±1.6 78.5±0.7

GCNAL [5] 54.9±1.4 63.3±2.2 70.8±1.4 77.0±1.3

CDAL [2] 60.9±0.1 67.2±0.4 74.6±0.2 78.4±0.5

BADGE [3] 60.6±1.3 67.3±0.2 73.2±1.1 78.7±0.2

Ours 62.5±0.6 69.4±0.7 75.1±0.3 78.3±0.1

Table 1. Top-1 test accuracy of various AL methods on HMDB [22].
* Values on top of each column reveal the size of the labelled set at
the end of each round.

in videos where our approach outperforms the baselines.
Interestingly, compared to the Random sampling, we are
able to improve the Top-1 test accuracy by more than 5% in
the first two AL rounds and 3% in the last ones. This signifies
the effectiveness of our proposed approach in reducing the
labelling cost which is particularly an obstacle for video
classification tasks. Moreover, ALFA-Mix outperforms all
other strong baselines with a large margin (more than 2%)
in the first three AL rounds. Interestingly, this is similar to
what we observe from our experiments on other data types
and show the effectiveness of our approach when applied to
pre-trained transformers and/or in low-data regimes.
4.4. Ablation Study

Learning Ablations. Figure. 3 demonstrates the percent-
age of AL rounds where ALFA-Mix performs better than the
baselines considering input data type, network architecture,
network parameter initialisation and the budget size. The
results indicate our approach, irrespective of other factors,
consistently outperforms other AL baselines. Interestingly,
when employing pre-trained networks, which is a common
practice for transferring learnt representations to new tasks,
ALFA-Mix 99% of occasions assists the model to generalise
better than random sampling. Additionally, in these settings,
our approach surpasses the strongest baselines (CDAL and
BADGE) in more than 40% of the rounds. Above all, using
Vision Transformer networks pre-trained in a self-supervised
manner, ALFA-Mix not only outperforms Random, BALD,

CoreSet and GCNAL in all the AL settings, it also signifi-
cantly improves on BADGE and CDAL in 60% and 43% of
the rounds respectively.

Interestingly, we observe a significant advantage from
our proposed AL method when it is applied on small budget
setting (Figure. 3). In fact, the test performance of our
approach exceeds BADGE (the best performing baseline) in
46% of the small budget experiments. Moreover, we observe
a more evident gap between our approach and others when
it comes to AL in low-data regime. For that, we consider
the performance in the first 5 rounds of AL using a small
budget; i.e. starting from 10×K randomly selected labelled
samples, each method queries for the maximum of 50×K
unlabelled samples overall during 5 AL iterations. Figure. 3
demonstrates the dominance of our approach in this setting
as it eclipses all other approaches in at least 60% of the
experiments. When using a large budget, our approach is
able to slightly surpass BADGE which previously has shown
great success in this setting.
Diversification. Figure. 6a illustrates the effectiveness of
the batch diversification on selecting final instances from
the set of samples whose predictions have been changed (I)
during the interpolation process. In addition to uniformly
sampling instances from the candidate set, we consider two
heuristics: (1) the norm of the interpolation parameter ∥α∥2
in which a lower norm indicates with smaller intervention
the model changed prediction; and, (2) the symmetric KL-
Divergence between the predicted label distributions from
the unlabelled instance p(y|zu;θc) and that of the interpo-
lated variant p(y|z̃α;θc). The latter evaluates the distribu-
tions change in the output (i.e. prefers samples with highest
values of symmetric KL-Divergence). Interestingly, both
heuristics show poor performances even in comparison with
the uniform selection from the candidate set. While this
highlights how hard the candidate selection could be, one
explanation is that these approaches might use a consider-
able proportion of the budget on samples that reside in a
small region of the space. Consequently, the selected batch
does not carry the whole information obtained through the
interpolation process.

In addition to the heuristic measures, we considered k-
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Figure 6. Ablations of our AL approach. Experiments are conducted on MNIST datasets using an MLP model and a small AL budget.

MEANS++, a simpler variation of k-MEANS that has shown
better performance in [3], as another contender. In contrast
to what found in [3], in our experiments, k-MEANS outper-
forms k-MEANS++ considerably as it better representations
found using interpolation.
Learning the Interpolation Parameter. As it is evident in
Figure. 6b, skipping the learning process for the interpola-
tion parameter α (see section 3.3) significantly reduces the
number of samples chosen in the candidate set. This can
have detrimental consequence on the diversity of samples
that are selected during the clustering.
Anchors. Figure. 6c shows the impact of using different an-
chors Z⋆. Evidently, the proposed method based on anchors
outperforms other plausible alternatives including picking
random samples from the labelled set and removing z⋆ dur-
ing the interpolation. The latter resembles adding noise to
the sample and is similar to applying adversarial attack in
the latent space.

Time (seconds)

Method MNIST
(MLP)

SVHN
(DenseNet)

Entropy [38] 1±0 169±44

BALD [15] 16±4 1723±445

Coreset [33] 7±2 185±49

DFAL [12] 242±69 –
GCNAL [5] 12±4 187±65

CDAL [2] 5±2 179±52

BADGE [3] 50±13 523±135

Ours 5±7 210±50

Table 2. Label acquisition run times
of different methods. Our approach
is significantly faster than BADGE
and about 50x quicker than its Ad-
versarial counterpart.

Acquisition Time. We
measured the time re-
quired to choose instances
for labelling during each
AL round. As demon-
strated in Table 2, using
a simple MLP network or
a deep DenseNet-121, our
approach performs com-
petitive with the fastest
baselines. This is mainly
because of the fact that
we only back-propagates
to a latent representation
layer (not the whole net-
work). Additionally, our
approaches reduces the time required for BADGE (the best
performing baseline) by a factor of more than 2 when ap-
plied to datasets with a small number of classes. We should
note that running BADGE on large-scale datasets with nu-
merous classes requires a considerable time and computing

resources. The main reason is the large dimensionality of the
gradient embedding in tasks with large number of classes
and instances. More importantly, Table 2 shows the time
needed for DFAL method for MNIST dataset, which makes
it impossible to apply to deep models and large datasets in a
reasonable time.

5. Conclusions and Limitations
In this paper, we proposed a simple AL method based on

the interpolation between labelled and unlabelled samples.
We effectively applied ALFA-Mix to a wide variety of image,
non-image and video datasets and demonstrate its state-of-
the-art results across various settings. Attractively, when the
labelled set is small and the budget is limited, our approach
is able to gain the most performance boost–it surpassed all
other baselines in around 60% of all evaluated rounds.

Further, the feature representations are not generally dis-
entangled [13, 25] and interpolation in the high dimensional
space may yield representations for unexpected inputs. Nev-
ertheless, our approach indicates such interpolations high-
light reasonable variations in the input that may otherwise
remain unexplored. For future, we consider using disentan-
gled representations to explore novel factors of variations.
Limitations: AL consciously selects a small subset of a
large pool of unlabelled samples to be labelled and used
to train a model. AL will be essential in catastrophes, like
pandemics, where the time to reach a model at a particular
level of accuracy becomes vital and would directly impact
the lives of people. In spite of that, its a common practice
to evaluate AL in a simulated environment mainly due to
financial constraints. However, AL community at large and
our approach in particular could heavily benefit from real-
world evaluations.
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